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Abstract
Transport-layer encryption is fundamental to protecting the basic
rights of Internet users from tracking, surveillance, and machine-in-
the-middle (MITM) attacks by adversaries along the network path.
Despite decades of progress in applied cryptography and an increas-
ing adoption of HTTPS, a substantial amount of network traffic
continues to lack proper transport-layer encryption, threatening
the privacy of end users and the integrity of the networks they
inhabit. Researchers and network operators examining the issue,
however, face a dilemma – in order to understand and mitigate
these risks, they often have to examine the very information they
aim to protect, such as sensitive user data exposed in plaintext. This
tension raises ethical concerns, impedes research efforts, and limits
our understanding of the threats posed by unencrypted traffic.

In this paper, we present CryptoFilter, a system designed for
scalable, protocol-agnostic, privacy-preserving analysis of network
traffic with weak transport-layer encryption at network gateways.
CryptoFilter incrementally reduces gateway-volume traffic (tens of
Gbps) in real-time (scalable) to a manageable amount of actionable
information, while preserving user privacy (raw packet payloads
never leave memory) and protocol semantics (protocol agnostic).
Over a month-long deployment at a regional ISP, we use CryptoFil-
ter to reason about network traffic composition, finding that a
concerning amount of traffic is unencrypted and not associated
with web browsers. We perform privacy threat mining to attribute
subsets of the bytes within traffic to potential surveillance (e.g.,
geolocation information) or infrastructure threats (e.g., plaintext
javascript). Finally, we identify applications not previously ana-
lyzed and confirm through manual reverse engineering that they
leak sensitive information or contain other privacy and security
exposures.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.
WPES ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1898-4/25/10
https://doi.org/10.1145/3733802.3764059

CCS Concepts
• Security and privacy→ Security protocols; •Networks→ Trans-
port protocols.

Keywords
Network Security, Passive Analysis, Privacy
ACM Reference Format:
Benjamin Mixon-Baca, Diwen Xue, Roya Ensafi, and Jedidiah R. Crandall.
2025. CryptoFilter: Privacy-Preserving Traffic Analysis of Weak Transport
Layer Encryption at Internet Gateways. In Proceedings of the 2025 Workshop
on Privacy in the Electronic Society (WPES ’25), October 13–17, 2025, Taipei,
Taiwan.ACM, NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3733802.
3764059

1 Introduction
Despite decades of advancement in applied cryptography and the
growing adoption of HTTPS, civil society worldwide continues to
face various threats from adversaries exploiting applications that
transmit data with missing or weak encryption. The presence of
such traffic poses a threat to end-users as well as the networks they
inhabit. For end-users, applications transmitting Personally Identi-
fiable Information (PII) in plaintext violate their privacy and expose
them to tracking by eavesdroppers on the network path [26, 29, 52].
For applications, the lack of transport-layer encryption during soft-
ware updates leaves them vulnerable to machine-in-the-middle
(MITM) and code injection attacks [27]. For the networks through
which such traffic traverses, the lack of transport-layer protec-
tion can jeopardize the integrity of the network, as illustrated by
past denial-of-service attacks where on-path adversaries injected
malicious JavaScript into unencrypted traffic [32]. Finally, for so-
ciety as a whole, traffic exposing unique identifiers enables mass
surveillance [2, 52], motivating agencies like the Federal Trade
Commission (FTC) Office of Technology to pose a series of open
questions such as “In what ways are firms engaging in commercial
surveillance?” and “What notable trends exist in the collection of
location data?” [16, 17]

Most of these past vulnerabilities were surfaced through a tar-
geted approach – researchers reverse-engineered specific appli-
cations to assess the threats they posed, selecting targets based
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on factors like download counts, user base, or historical evidence
of problematic security behaviors within certain market sectors.
While these efforts have been successful in raising awareness of
insecure communication practices, the insights derived from in-
dividual apps do not necessarily address the broader concerns of
all stakeholders: network operators and ISPs are not merely inter-
ested in cataloging insecure applications; they need to understand
the types of insecure traffic patterns that are actually present in
their networks in order to protect their users and infrastructure.
Likewise, for advocacy and enforcement of better security prac-
tices, stakeholders must know what insecure traffic currently is
out there, yet selecting individual targets from the vast “long tail”
of insecure applications is simply not feasible [14, 47]. All of this
calls for a paradigm shift from application-centric analysis to an
exploratory, network-level method that, through the lens of ISPs
and network gateways, discover insecure traffic patterns without
predefined targets.

Adopting such an approach to investigate insecure traffic at inter-
net gateways, however, introduces significant challenges. Internet
traffic is characterized by many proprietary protocols, ranging from
those explicitly designed as protocols (e.g., mmTLS for Tencent
apps [35, 54]) to those which are simply artifacts of application
design (e.g., passing GPS coordinates to a server using a URL pa-
rameter called “latlng”). These protocols are often built on top of
existing protocols, such as HTTP. Meaningfully characterizing un-
encrypted traffic requires reasoning about this full protocol stack,
including the multitude of proprietary protocols. We therefore de-
fine our first requirement: the analysis system should be protocol
agnostic. That is, it should work for protocols that are unknown,
reasoning about such protocols on the fly.

Furthermore, any examination of real user traffic brings up se-
rious privacy concerns as we hypothesize that sensitive user data
is co-located with application and protocol-specific byte patterns,
such as protocol framing. This concern is particularly critical in
our situation, where we target precisely those traffic flows that lack
proper encryption mechanisms. Analyzing such traffic increases
the chances of finding sensitive data – like Personally Identifiable
Information (PII) – that is exposed in plaintext. The second re-
quirement that we define is that the analysis system should be
privacy-preserving.

This scenario creates a paradox: network operators and security
researchers have a legitimate need to characterize and mitigate
the threats posed by unencrypted traffic; yet the data required for
such analysis is the same data whose examination could violate the
privacy of the users who send it. This is the tension that motivated
our study. We ask: Can we analyze unencrypted traffic from real
users in a privacy-preserving way? But, more to the point, the re-
quirements that the analysis system be both protocol agnostic and
privacy-preserving combine to introduce a unique challenge for
meeting the requirement of scalability. This is because, while the
protocol agnostic requirement implies a deep analysis of every byte
of packet payloads, the privacy-preserving requirement precludes
the possibility of storing packet raw payloads for later analysis. In
other words, all analysis must be performed in real time, at traffic
line rates.

In this paper, we present CryptoFilter, a system designed to
meet all three of these challenges and facilitate privacy-preserving

analysis of network traffic with weak transport-layer encryption at
network gateways. CryptoFilter marks a departure from traditional
flow-based analysis by adopting a content-centric approach, where
fixed-size payload segments (chunks, variants, and invariants de-
scribed further in § 3.1) serve as the primary unit of analysis. The
system operates through a multi-stage filtering pipeline, where
the initial stage discards traffic that appears to be fully encrypted
or unlikely to contain payloads of interest, incrementally reduc-
ing high-volume gateway traffic to a set of patterns that are most
relevant from a security perspective. The subsequent sifting stage
isolates invariant segments of the traffic – consistent byte sequences
that recur across multiple traffic flows – while ensuring that data
specific to individual users (variants) are not accessed or retained
beyond volatile memory.

What sets CryptoFilter apart from existing approaches is its
emphasis on privacy: privacy-preserving analysis is not just con-
sidered; it is a fundamental design goal. CryptoFilter is explicitly
developed with the understanding that unencrypted traffic can in-
clude sensitive personal data that must never be viewed by humans
or stored in persistent memory. At the same time, it still aims to
grant researchers some extent of visibility into packet payloads in
an anonymized and aggregated form. Additionally, scalability is
a major requirement for analyzing the vast amounts of gateway
traffic at line-rate, eliminating the need to write data to persistent
memory for offline processing. Finally, CryptoFilter is protocol-
agnostic. In contrast to traditional solutions that rely on parsing
specific protocols, CryptoFilter is capable of adaptively identifying
segments of traffic with missing encryption. This allows it to target
not just standard plaintext protocols like HTTP or SIP but also
custom or proprietary protocols that may lack proper encryption.

We demonstrate CryptoFilter’s practical utility through both in-
lab, controlled experiments as well as a month-long deployment at
a major Point-of-Presence (PoP) of a regional ISP. Analyzing traffic
generated by real users, CryptoFilter ’s multi-stage content sifting
pipeline progressively reduced the high volume of gateway traffic
– measured in tens of gigabits per second – by several orders of
magnitude, isolating a manageable set of invariant patterns that are
prevalent across the network but unrelated to any particular user.
We clustered these discovered invariant patterns and performed
follow-up manual analysis. Among the clusters, we identified pat-
terns indicating privacy leaks, such as PII and location data, as
well as plaintext JavaScript susceptible to code injection attacks.
Furthermore, we conducted an end-to-end case study where we
attributed the invariant patterns to specific applications responsi-
ble for generating them. Through manual analysis, we confirmed
critical security and privacy vulnerabilities in these applications
due to their inadequate transport-layer security practices, such as
transmitting sensitive data over unencrypted channels.

The remainder of this paper is structured as follows. §2 provides
background and related work on traffic analysis. §3 describes pri-
vacy considerations when conducting research on real network
traffic. §4 describes the technical design of CryptoFilter. We evalu-
ate CryptoFilter in §5. §6 describes ethical considerations for our
research and we conclude with a discussion in §7.



CryptoFilter: Privacy-Preserving Traffic Analysis of Weak Transport Layer Encryption at Internet Gateways WPES ’25, October 13–17, 2025, Taipei, Taiwan

2 Background & Related Work
We now provide an overview of passive traffic analysis and the
type of traffic and applications CryptoFilter is designed to analyze,
including examples from the literature.

2.1 Passive Traffic Analysis
Studies aimed at measuring the Internet and examining network
traffic can be broadly categorized into active and passive approaches.
While active measurement involves injecting new traffic to observe
how a system or host responds, passive measurement involves only
observing in-situ traffic to extract insights without changing the
environment. Our work with CryptoFilter aligns with the latter ap-
proach. Passive traffic analysis leverages information from network
packets to infer properties about the network or to characterize the
behaviors of users within the network. Unlike active measurements,
which are typically conducted from network edges, passive traffic
analysis is often performed from network gateways, where aggre-
gated traffic from multiple hosts enables large-scale analysis and
provides more representative insights. Such analyses may rely on
traffic metadata (e.g., packet timing, size, or inter-host connection
graphs) or may involve examining content from packet payloads
to identify specific byte patterns. CryptoFilter falls into this latter
category of content-based analysis.

Prior work has used passive traffic analysis as a technique to
address security and privacy-related research questions. Seminal
work from the early 2000s demonstrated how mining invariant
payload fingerprints could detect worm propagation and generate
early alerts [23, 36, 48, 53]. Perdisci et al. and Aresu et al. further
developed network-level clustering systems to automatically gen-
erate signatures for known malware families based on structural
similarities in malicious plaintext HTTP traffic [4, 42]. For the de-
tection of unknown malware or covert backdoor communications,
Bortolameotti et al. introduced DECANTeR, a system for passively
extracting fingerprints of covert HTTP communications [6]. On
the privacy front, Fu et al. identified suspicious location-related
transmissions over plaintext HTTP and classified whether these
transmissions were intended by the user [18]. Closer to our work
in spirit, Jain et al. proposed a passive traffic analysis technique
for extracting latent identifiers from network traffic that could be
exploited for covert tracking of users [21].

User privacy matters, even when there is a legitimate research
need. Since passive analysis captures in-situ data from communi-
cating parties, there is often no practical mechanism to notify these
parties or provide an opt-out option [39, 41]. This presents ethical
challenges, as sensitive personal information could be among the
payloads that are inspected during the analysis. To mitigate these
privacy concerns, some prior research has opted to completely dis-
card packet payloads from their analysis. For example, Huang et al.
and Prakash et al. curated a crowd-sourced dataset to investigate the
security and privacy practices of smart home IoT devices [20, 43].
The researchers explicitly chose not to collect traffic payloads for
privacy reasons, but acknowledged that discarding payloads lim-
ited the extent of possible analysis. Alternatively, when specific
features of interest are known in advance, researchers may choose
to extract and log only these features, rather than analyzing the

POST mtapi/v6/home/tabs?wm_appversion=********utm_medium=a
ndroid&wmUuidDeregistration=12&wm_seq=-1&uuid=********&use
r_id=****&wm_longitude=********&wm_latitude=*******

POST /rest/n/nearby/map/bubble?ll=********&earphoneMode=1&
mod=Google%28Pixel%207a%29&appver=*********&egid=********&
thermal=10000&net=WIFI&lat=&******&ANDROID_PHONE&bottom_na
vigation=false&ver=11.11&android_os=0&oDid=ANDROID_*******

Figure 1: CryptoFilter separates the variants (blue) from vari-
ants (red) to facilitate privacy-preserving traffic analysis. Top:
packet from Meituan, a popular Chinese shopping platform.
Bottom: a popular Chinese short video platform.

entire payload. For example, DeKoven et al. and Ukani et al. ex-
tracted features such as “device X is updating antivirus product
Y” from campus network traffic to explore the online behaviors
of students [11, 51]. Our goal with CryptoFilter is to present an
alternative: to preserve user privacy while providing researchers
with limited visibility into packet payloads (layers 5 and above) in
an anonymized and aggregated manner.

2.2 Applications with Insecure Transport
Despite the growing adoption of HTTPS, a significant number of ap-
plications still lack proper transport-layer encryption, threatening
the privacy of their users. Studies as recent as 2020 have shown that
many websites, particularly regional and governmental ones, do
not support or enforce encryption [14, 47]. With mobile becoming
ubiquitous, a substantial body of literature has examined the lack of
encryption and privacy leaks in mobile apps [10, 50, 55]. In particu-
lar, Vanrykel et al. investigated how mobile apps can be leveraged
for surveillance through the transmission of unique identifiers over
unencrypted connections [52]. Their study of 1,260 apps found that
a global passive adversary could cluster up to 57% of a user’s unen-
crypted traffic using identifiers such as Android ID, MAC address,
or IMEI. Knockel et al. and Rodriguez et al. evaluated the security
practices of popular web browsers, identifying insecure transmis-
sion of sensitive data (e.g., location and browsing history) without
encryption [27, 44]. Kujath et al. analyzed eight widely used mobile
apps in Latin America and found issues such as plaintext HTTP con-
nections and leaks of personally identifiable information (PII) [29].
In a 2020 report, CNCERT/CC analyzed 50 banking miniapps and
found that over 60% of them transmitted personal data without en-
cryption [9]. Apart frommissing encryption, prior studies have also
highlighted instances where proprietary, non-standard encryption
schemes contained flaws that allowed adversaries on the network
path to decrypt communications [22, 26, 35]. CryptoFilter has iden-
tified some of these previously reported issues in this work.

Applications with insecure transport not only endanger user
privacy but also compromise the integrity of the networks they
traverse. For example, Marczak et al. examined a large-scale denial-
of-service attack enabled by on-path adversaries who intercepted
and injected malicious JavaScript into unencrypted traffic [32].
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3 Privacy Considerations in Network Research
with Real-User Traffic

Our work is motivated by a paradox in network security and pri-
vacy research: much of the data needed for such research must be
derived from real networks and users, yet the very act of examining
and analyzing network traffic can infringe upon user privacy. This
tension is particularly clear when targeting traffic that is weakly en-
crypted – on one hand, network operators and security researchers
have a legitimate need to analyze data packets traversing network
boundaries to assess vulnerabilities associated with unencrypted
or weakly encrypted traffic. On the other hand, merely monitoring
such unencrypted traffic can be ethically problematic, as sensitive
information, such as Personally Identifiable Information (PII), may
be exposed in plaintext.

Consider, for example, the question: “Are there applications in
my network that transmit sensitive user information, such as PII,
in plaintext?” Researchers or network operators seeking to an-
swer this question face a dilemma: in order to identify applications
leaking sensitive data to on-path entities (e.g., transit ISPs) due to
insufficient encryption, they must examine the very information
they seek to protect. The common justification for such research is
often that the potential benefits outweigh the privacy risks, or that
only processed logs generated by automated packet analyzers are
stored rather than raw packet data [7, 11, 51]. While not storing
raw payloads offers some degree of privacy protection, for most
general-purpose traffic analyzers (e.g., Zeek), there is simply no
guarantee that PII will not survive through processing or that the
generated logs will not contain any data that can be personally
identifying.

This dilemma impedes research efforts that involve sharing net-
work traffic with third parties, such as security researchers out-
side of the organization managing the network. Prior work has
highlighted the difficulties researchers had when seeking access to
network traffic from network operators [7], with raw traffic pay-
loads being (understandably) the least likely to be shared. This is
consistent with our own experience. While we do not advocate
for open access to network traffic or for establishing research ex-
ceptions in privacy regulations – network operators have a moral
obligation to safeguard users’ privacy – we do hope that through
this exploratory study, we can address some of the more serious eth-
ical/privacy concerns, such as the risk of PII exposure, and thereby
alleviate the tension between security/research needs and privacy
considerations.

3.1 Variants vs. Invariants
A key motivation behind our CryptoFilter system lies in the obser-
vation that privacy needs do not necessitate complete freedom from
observation – the primary privacy concerns in this type of research
is due to the potential exposure of sensitive information that can
be personally identifiable (PII) within unencrypted or weakly en-
crypted traffic being examined [46]. Information such as UUIDs,
location data, online identifiers, or other information specific to a
natural person [1], are collectively referred to as variants in this

paper 1, as they are defined by their nature of varying across indi-
viduals or devices. In contrast, invariants refer to those parts of
the payload that are consistent across all traffic streams following a
specific protocol or across all users communicating through a par-
ticular application. Examples include headers, protocol framing, or
application identifiers. For answering security and privacy-related
research questions, invariants often offer more insights as they
allow researchers to identify trends and cluster violating applica-
tions or protocols regardless of the identities of the communicating
parties.

As examples, Figure 1 shows packet payloads from two applica-
tions whose traffic appeared in CryptoFilter’s outputs during our
evaluation in § 5. In both cases, the application client transmits
unencrypted data containing private information. In the top ex-
ample (Meituan), the payload consists of a header and key-value
pairs, including a unique user identifier and geographic coordi-
nates. Assuming multiple devices with this app installed are present
in a network, portions of their network traffic will overlap (i.e.,
invariants), while other portions will be unique to each device
or individual (i.e., variants). An ideal traffic analysis technique
would filter out the variant portions of the payload while retaining
the invariant portions that are neither unique nor attributable to
specific users.

4 CryptoFilter: System Design
CryptoFilter is designed to facilitate privacy-preserving analysis of
network traffic with weak transport-layer encryption at network
gateways (e.g., residential ISPs, enterprise networks, university
campus gateways). The system is guided by two primary objectives:

Goal#1: Isolation of weak/missing encryption The primary
goal is to identify flows that likely lack encryption or use weak
transport-layer encryption, while excluding flows that are properly
encrypted. This approach reduces the search space, a necessary
step given the substantial volume of traffic passing through a net-
work gateway. Examples ofweak transport-layer encryption include
invariant assets (e.g., embedded public keys), protocol framing as-
sociated with plaintext communication, or insecure, non-standard
encryption schemes that produce repeating ciphertexts (e.g., block
ciphers using Electronic Codebook (ECB) mode).

Goal#2: Privacy-Preserving Analysis: No PII The system is
designed to uphold user privacy throughout the analysis process.
It should be noted that the traffic targeted by the above analysis
potentially has more significant privacy implications than network
traffic in general, as it likely lacks proper encryption to protect
potentially Personally Identifiable Information (PII). Specifically,
the content of the network traffic that could contain potential PII
must not be accessible to human eyes or stored persistently (to
disk).

1The concepts of “PII” and “variants” are not exactly synonymous. Variants include
anything unique to a device or individual’s traffic over a particular period, which makes
this definition broader andmore conservative –while personal data is explicitly specific
to an individual, not all unique data qualifies as personal data. For example, properly
encrypted ciphertext has a degree of uniqueness as it should be indistinguishable from
random data, yet not all ciphertext is considered personal data.
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Figure 2: System Overview of CryptoFilter. CryptoFilter facilitates privacy-preserving analysis of traffic with weak transport-
layer security by using a two-stage content sifting pipeline that incrementally filters out traffic unlikely to provide usable
insights for researchers (e.g., either fully encrypted or may contain privacy-sensitive data).

Adirect implication of Goal#1 is that the systemmust beprotocol-
agnostic. The system should not rely on manually curated pro-
tocol specifications for parsing; rather, it should be capable of au-
tonomously detecting traffic components indicative of weak en-
cryption without having to parse them first. While certain plaintext
protocols (e.g., HTTP) have well-defined structures, identifying
new or emerging applications using custom protocols that lack
proper encryption demands an automated, protocol-independent
approach.

For Goal#2, a key implication is that analysis must be scalable so
that gateway traffic can be processed in real-time without having to
write the entire flow to non-volatile memory for offline processing.
Additionally, the internal states maintained for the analysis across
flows and times should use moderate amounts of memory.

Non-goal The privacy guarantees of CryptoFilter are focused on
ensuring that its outputs do not contain content that is personally
identifying on its own (i.e., myname=johnwick should not show
up in outputs). However, the system does not aim to address the
broader privacy implications of the presence or absence of specific
content in its output. In other words, while CryptoFilter aims to
filter out contents that could directly identify individuals, the in-
clusion of particular content in its output (e.g., language=russian)
might still provide indirect insights into the composition of the
traffic. Addressing these potential inferences lies outside the scope
of CryptoFilter’s design.

4.1 System Overview
We begin with a high-level overview of CryptoFilter before explain-
ing each stage in detail. CryptoFilter is designed to analyze live
network traffic at gateways, process it in a privacy-preserving way,
and produce a set of invariants that can be ethically used to answer
security questions about the traffic within a network. As shown in

Figure 2, the system processes raw network traffic through multiple
stages to generate the final outputs.

(1) Pre-processing We use PF_RING [37] to capture packets
at the monitored (or mirrored) network interface. We also use
PF_RING’s zero-copy extension to further improve performance.This
step also applies filtering rules to the packets, such as restricting the
capture to specific subnets(e.g., only capturing traffic from student
dorms on a campus network). PF_RING also supports scaling the
system by distributing packets across multiple CPU cores, which is
essential for processing gateway traffic volume in real-time.

(2) Transitive Sampling Modern traffic rates and volumes ne-
cessitate downsampling for systems that aim to process traffic in
real-time. Without sampling, a moderate 60 Gbps feed of gateway
trafficwould fill 256 GB of RAM in just 30 seconds. A simple random
sampling approach using flow identifiers would disproportionately
favor short-lived, high-concurrency traffic patterns, such as those
from network scanning tools (e.g., Zmap and MassScan [12, 19]).
To address this disparity, we devise a novel sampling algorithm
called Transitive Sampling, that dynamically selects one-to-many
and many-to-one traffic patterns with particular characteristics
found in client-server communications.

(3) Content Prevalence CryptoFilter aims to isolate traffic with
weak or missing encryption. At this stage, a sliding window divides
the payloads from flows into fixed-size chunks, then accumulates
observations of each chunk.The goal is to remove chunks that are
likely encrypted, as properly encrypted data should not repeat often
compared to unencrypted data. At this point, the concept of “flows”
becomes less relevant, and the analysis becomes content-centric
– specifically the chunks are used as keys on which we maintain
counters.

(4) Address Dispersion This stage measures how widely each
chunk from the previous stage is dispersed across the network’s
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address space. Specifically, we measure the number of unique IP
addresses associated with each chunk and retain only those that
are transmitted across a large number of addresses. If a chunk is
common to many IP addresses (e.g., invariants from Figure 1), then
they, by definition, do not uniquely identify specific users. The final
output is a list of invariants and meta-data (i.e. packet numbers,
offsets, and anonymized ports and IP addresses) that can be used
for downstream tasks.

(5) Post-processing The raw output has applications including
app or threat identification performed either manually or automati-
cally using machine learning.

4.2 Sifting: (3) Content Prevalence
We begin by describing the design of the first sifting stage, which
evaluates the prevalence of specific content within a traffic stream.
Although the two sifting stages occur after transitive sampling,
we describe them first, as they implement the privacy preserving
component of CryptoFilter.

Chunk After a packet is pre-processed with PF_RING, we iterate
over its payload using a sliding window of 𝑘 bytes, generating a
stream of 𝑘-byte chunks. Since each chunk is mapped to a counter
to track its frequency, a smaller 𝑘 would require less memory but
be less effective at filtering out encrypted content (e.g., for 𝑘 =

1, the system would only need 64 counters, but it would not be
useful for filtering). On the other hand, a larger 𝑘 might miss out
invariants shorter than 𝑘 (e.g., for 𝑘 = 10, the invariant parts of
userkey=******uid=****** cannot be isolated).Based on insights from
prior work [21], we use a 64-bit (8 bytes) chunk size.

It is worth emphasizing that from this point onwards, the analy-
sis in CryptoFilter focuses on these chunks – they serve as keys for
maintaining counters in both of our high-pass filters (i.e., prevalence
and dispersion filters). Compared to flow-based analysis, this ap-
proach is more efficient as it reduces the need to maintain extensive
per-flowmetadata. Additionally, using a small chunk size allows our
approach to dynamically identify frequently occurring substrings
without having to parse the entire payload at once, therefore does
not require prior knowledge of the protocol (protocol-agnostic).

For the content prevalence filter, we use the contents (byte val-
ues) of each chunk as the key in an associative array of counters
that track how many times each chunk appears in the traffic stream.
If a counter exceeds a threshold 𝑇𝑃 , the corresponding chunk is
passed to the job queue of the next filtering stage (§ 4.3). We note
that even with 𝑇𝑃 = 2, the vast majority of properly encrypted
traffic will be filtered out at this stage, and there is strong evidence
to suggest that chunks remaining after this filter indicate that at
least part of the corresponding TCP session is unencrypted2.

4.3 Sifting: (4) Address Dispersion
Similar to the content prevalence stage, the address dispersion stage
also maintains an associative array with 𝑘-sized chunks as keys,
but with the number of unique sender/receiver pairs associated
with each chunk as values. Importantly, only those chunks that pass

2A properly encrypted 8-byte should only recur once in 264 chunks. Accounting for
the birthday paradox, the expected amount of traffic before a collision is approximately
every 40 Gigabytes of traffic. While collisions are likely to occur given the traffic
volume at gateways, the preceding sampling stage and following dispersion filter limit
total volume and impose a much higher threshold.
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the content prevalence stage are tracked in this address dispersion
table. If the count for a chunk exceeds a predefined threshold, 𝑇𝐷 ,
it is passed on to the post-processing stage for logging.

This dispersion stage is designed to filter out chunks that orig-
inate from a small number of IPs. For example, consider the raw
payload userkey=******. The chunk userkey= is likely common
across multiple flows of this particular application across different
clients, whereas chunks like serkey=* and the ones that follow con-
tain user-specific byte values, therefore, less dispersed across the
address space. The dispersion filter helps distinguish between pay-
load segments that are unique to specific IPs that could potentially
contain PII (e.g., user IDs or geographic coordinates) from those
that are common across many IPs (e.g., protocol framing or static
resources such as images or icons served to all users). By definition,
the content of chunks that are observed in transmissions involving
many different addresses should not be able to uniquely identify
individual users.

A major challenge in tracking address dispersion across the
address space is the memory required to store a set of unique IP ad-
dresses for each chunk. To address this, we implement the counters
in the address dispersion table as HyperLogLog (HLL) [15], a prob-
abilistic data structure designed for efficient cardinality estimation.
HLL works by hashing elements into a fixed-size array of buckets,
then tracking the maximum number of leading zeros among these
hashes to approximate cardinality, all while using minimal memory.
In our system, each chunk serves as a key, mapped to an HLL that
tracks the unique IP pairs involved in its transmission. After each
update to an HLL, we compare the estimated cardinality for the
corresponding chunk against the threshold 𝑇𝐷 .

It is important to acknowledge that IP addresses do not always
directly correspond to individuals due to mechanisms like Network
Address Translation (NAT) and users roaming across networks.
CryptoFilter does not reason about NAT in any special way, as
NAT generally results in chunks appearing less dispersed, thereby
increasing confidence in the non-PII determination. On the other
hand, when a single user roams across networks/addresses, it may
reduce the apparent uniqueness of their data, making their chunks
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appear more dispersed than they are in reality. However, since
CryptoFilter is designed to operate at the gateway of a specific
network, the impact of user roaming on the dispersion analysis is
limited to movement within that monitored network. To address
this, the dispersion table can be periodically reset, with the reset
interval adjusted based on the size of the monitored network and
dispersion threshold. In our deployment, we reset the dispersion
table every 10 minutes at most, with a conservative threshold of
𝑇𝐷 = 100. Figure 3 shows the average number of unique invariants
for different values of 𝑇𝐷 . We settled on 100 for two reasons. First,
having a sufficiently high lower bound ameliorates the potential for
erroneous results due to collisions that might occur. Second, it gives
the the highest number of unique invariants which permit us to
cluster and classify applications more effectively. Finally, we empha-
size that in our approach, the dispersion of IP addresses serves only
as a heuristic for identifying chunks that are sufficiently common
across the address space, rather than as a precise measurement of
unique individuals.

4.4 (2) Transitive Sampling
Adirect consequence of the requirement for the CryptoFilter system
to process gateway network traffic in real-time, without storing
packets to non-volatile memory, is the need for sampling traffic as
it reaches the system. A naive approach, such as uniformly random
sampling based on flow 5-tuples, would likely disproportionately
favor short-lived, high-concurrency traffic patterns, such as those
generated by network scanning tools, while discarding a large
fraction of persistent client-server traffic, which is generally of
more relevance for security analysis.

We improve upon random sampling by proposing and developing
transitive sampling. At a high level, transitive sampling leverages the
transitive relationships between clients, servers, and applications
that initiate connections between them to explore a population of
IPs with potentially similar protocol characteristics. For example,
consider a scenario where two clients,𝐶1 and𝐶2, are using the same
application to communicate with a server 𝑆1. Once we establish that
missing or weak encryption exists in the network flow𝐶1 ↔ 𝑆1, it is
reasonable to expect that other clients interacting with 𝑆1 may also
exhibit similar insecure communication patterns, as the underlying
application is the same. Thus, when we observe a flow𝐶2 ↔ 𝑆1, we
should sample this flow so that invariants from this application
can ultimately pass through the two high-pass filters. With the
transitive relationship 𝐶1 → 𝑆1 → 𝐶2, CryptoFilter effectively
explores populations of IPs associated with a single application.

While the server-based transitive relationship allows CryptoFil-
ter to explore communities related to a specific application, this
form of sampling alone does not facilitate the discovery of new or,
in particular, unknown applications or protocols. For this, we use a
client-based transitive relationship. Whereas server-based transitiv-
ity assumes that the same application server will send/receive the
same invariants to/from any client using the app, client-based
transitivity assumes that each client is likely to have multiple appli-
cations, some of which might not be unknown to researchers but
contain potential privacy violations. Continuing from the previous
example, if 𝐶1 communicates with 𝑆1 over an insecure transport,

Figure 4: Transitive Sampling leverages the transitive relationships
between clients, servers, and applications that initiate connections
between them to explore a population of IPs with potentially similar
protocol characteristics.

then the communication between𝐶1 and another server, 𝑆2, involv-
ing a different application, may also be of interest to CryptoFilter.
Client-transitivity also exploits the fact that a single application
may contain advertising libraries or communicate with backend
servers other than a primary app server.

Watchlist At the core of our implementation of transitive sam-
pling is an associative array of IP addresses, referred to as the
watchlist, whose traffic should be sampled and analyzed. Each IP
address in the watchlist has an associated distance metric, 𝑑 , repre-
senting the level of similarity or relationship between IPs. When a
packet enters the sampling stage, if either the source or destination
IP is in the watchlist, the packet is passed to the subsequent sifting
stages. Additionally, if only one of the IPs is in the watchlist with
distance 𝑑 , the other IP is assigned a distance of 𝑑+1. If this distance
is below a predefined threshold (to prevent indefinite growth of
the watchlist), the IP is added to the watchlist. If neither IP is in
the watchlist, the packet is discarded. As illustrated in Figure 4, the
watchlist effectively captures both types of transitive relation-
ships between IPs. We emphasize that the watchlist never leaves
volatile memory and is never inspected by humans.

Packet Decay To prevent the same set of IPs being analyzed
continuously and to create opportunities for exploring new IPs
with higher distances, each IP in the watchlist is associated with
a counter called Packet Decay. This counter decreases by one for
every packet sent or received by the corresponding IP. When Packet
Decay reaches zero, the IP is removed from the watchlist. Packet
Decay serves as a low-pass filter, specifically designed to prevent
IPs that generate large volumes of low-priority traffic from de-
pleting system resources (e.g., network scanners generating high-
volume probes from the same addresses). Without this mechanism,
CryptoFilter would not be able to expand its scope and explore a
broad range of unique applications and processes.

Cold Start Systems such as transitive sampling that rely on
historical data or past relationships may lack sufficient information
to make decisions when they are first initialized. Specifically, the
watchlist relies on existing associations between IPs to expand
and populate itself, but it requires a mechanism to bootstrap the
watchlist upon initial startup. To address this, we use a small set
of Seeds to help CryptoFilter target specific applications or traffic
properties of interest and quickly start makingmeaningful sampling
decisions.
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Table 1 Seed Sets: The list of seeds used to bootstrap transitive
sampling.
Seed Sets

User Agent Location HTTP Methods Javascript Control App

"User-Agent" "latitude" "POST /" "javascript" "GDTADNetClient" "AiMeiTuan"
"user-agent" "longitude" "GET" "function=" "AliXAdSDK" "__weibo__"
"UserAgent" "lng=" "iqiyi" "douyin"
"User Agent" "lat=" "MicroMessenger" "HCDNLivenet"
"user agent" "latlng=" "MQQBrowser" "QQMusic"

"CityId" "QTP;QTP" "QYPlayer"
"City_Id" "TBAndroid" "Youku-ntk"
"cityid" "com.ss.android.ugc.aweme" "Netease"
"city_id" "com.sankuai.meituan"

We constructed five sets of Seeds, as summarized in Table 1. The
“JavaScript” seeds are used to identify applications that transmit
plaintext JavaScript. The “HTTP Method” seeds target IP commu-
nities that use plaintext HTTP transport – previous research has
shown that many applications with weak transport layer secu-
rity often embed their communications within HTTP [24, 31]. The
“Location” seeds are associated with the transmission of location
information. The “User-Agent” seeds prioritize sampling traffic gen-
erated by applications that explicitly identify themselves. These
seeds are derived from domain expertise and findings from previ-
ous work [21]. Finally, the “Control App” seeds are byte sequences
derived from user-agent strings of the control applications used in
our evaluation in § 5.

While these seeds help address the cold start problem and expe-
dite the construction of the watchlist, they are not indispensable
components of CryptoFilter. As an alternative, random sampling
could be used to initially populate the watchlist. We implemented
both approaches and provide a comparison their performance (seed-
based versus random) in Appendix A.1.

4.5 (5) Post-Processing & Applications
Once chunks have passed the dispersion stage they are invariant
and are considered relevant from a security standpoint, with reason-
able confidence that their contents are not personally identifying
on their own. The invariants are logged to a file along with the
timestamp, direction, source and destination port, IP address, packet
number, packet length, and packet offset. If the invariant overlaps
with those from our control data, they are logged directly, other-
wise, a salted SHA256 (HMAC-SHA256) is applied prior to logging,
as recommended by [38] to mitigate chosen plaintext attacks. The
same anonymization technique is applied to the internal port and
IP.

4.6 Prototype Implementation
The initial prototype of CryptoFilter was implemented on top of
Zeek [56], an open-source traffic analysis framework. However,
due to performance considerations, we later transitioned to a stan-
dalone implementation in C++. The standalone CryptoFilter system
consists of roughly 28K lines of code and supports both PCAP mode
and live traffic processing. The system interfaces with PF_RINGwith
Zero-Copy support for efficient packet processing. The primary
dependencies of CryptoFilter include the HyperLogLog library and
libraries for PF_RING support during compilation.

The content prevalence stage is implemented using a multi-
threaded design, with the number of threads configurable at compile

time to match the number of available CPU cores. After transitive
sampling, a prevalence thread is selected at random, and the packet
is added to its thread-safe work queue. Each thread processes pack-
ets from its work queue by iterating through the payload to generate
a stream of chunks. Each chunk is first checked against entries in
the address dispersion filter, updating the corresponding entry if a
match is found. Otherwise, the prevalence counter corresponding
to the chunk is updated. Note that each thread in the prevalence
stage maintains its own prevalence table, tracking the occurrences
of different chunks independently of the other threads. We plan
to open-source our prototype at publication time under the GPLv3
license.

4.7 Limitations and Potential Extension
As with any effort to enhance privacy, our system does not guaran-
tee complete privacy in the broadest sense. Our goal with CryptoFil-
ter is to improve upon current practices, and set a higher standard
for privacy preservation during the analysis of weakly encrypted
or plaintext traffic, especially since this type of traffic is inherently
more vulnerable to scrutiny. CryptoFilter’s focus is to provide a
single guarantee: that the invariants emitted by the system, by
themselves, do not directly identify any individual. However, even
this seemingly simple goal needs to be qualified – it’s widely un-
derstood that with enough surrounding context, almost any piece
of information can potentially become personally identifying. We
believe our system’s invariant-centric approach to traffic analysis
minimizes the contextual information that can be associated with
or inferred from the system’s output. For example, with a dispersion
threshold of𝑇𝐷 = 100, each invariant is guaranteed to have at least
100 distinct IP-based contexts associated with it, therefore reducing
the risk of associating the output with a specific individual.

It is important to emphasize that our design for CryptoFilter as
presented in this paper errs on the side of being extremely con-
servative about user privacy. Although invariants have crossed
thresholds that make them unlikely to contain PII, we still apply
a salted cryptographically secure hash such that the plaintext of
those invariants can only be recovered if we already know the
plaintext. In other words, the unhashed packet contents are only
visible to us as analysts if the same byte pattern also appeared in our
control data, otherwise the invariant can only be used in a “bag of
words” sense for clustering the data. Future work could relax these
requirements to give analysts more visibility into the invariants
that caused thresholds to be triggered, but because CryptoFilter
is still in an experimental stage of development, our access to the
network gateway is for research purposes only, and there have been
no previous studies providing insight into what apps have poor
transport security at an Internet gateway.

5 Evaluation
To assess the practical utility of our system, we deployed CryptoFil-
ter within a real-world ISP – ISP-M– and conducted an initial de-
ployment run to gain qualitative insights into the system’s capabili-
ties in a live network environment. The following sections describe
our deployment process and initial findings. We begin by demon-
strating the system’s ability to reduce the vast traffic volume –
measured in tens of Gbps – into manageable subsets more tenable
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Figure 5: CryptoFilter Deployment inside ISP-M.

for an analyst to process. Next, we present an end-to-end case study
in four stages: (§ 5.3.1) showcase CryptoFilter’s ability to preserve
semantically meaningful protocol information, (§ 5.3.2) identify po-
tential privacy leakage (e.g., PII, location data, etc.) due to missing
encryption while preserving user privacy, (§ 5.3.3) identify previ-
ously unanalyzed applications (those not previously analyzed or
included in our control experiments), and (§ 5.3.4) reverse engineer
eleven previously unanalyzed applications.

5.1 Setup
Our setup is two-fold: first, we adopt the perspective of a network
operator by deploying CryptoFilter within an operational ISP, ISP-
M 3. This real-world deployment is augmented by a set of control
experiments, which are designed to ensure strict adherence to ethi-
cal guidelines (see § 6) by allowing us to validate system outputs in
a controlled environment.

5.1.1 ISP-MDeployment. Weused a prevalence threshold of𝑇𝑃 = 2
and a conservative dispersion threshold of 𝑇𝐷 = 100. To mitigate
the effect of user roaming on the dispersion analysis, we reset both
tables every 10 minutes. We ran CryptoFilter on the Monitoring
Server for 31 days, collecting output chunks that passed through
both sifting stages.

5.1.2 Control Experiments. We complemented our ISP deployment
with control experiments conducted in a lab setting. Specifically,
we selected 30 mobile applications – half from the Google Play
Store and half from the Tencent Appstore (a major app store in
China) – with apps chosen from the top categories in each store.
Each app was downloaded and installed on six Android phones, and
each instance was run with automated interactions using Android
Debug Bridge (ADB), combined with manual interactions from
researchers (for initial setups such as registration and agreeing
to Terms of Service). Network traffic was captured, with flow-to-
app attribution performed using Pcapdroid [13]. The raw traffic
capture was then passed through CryptoFilter, with prevalence and
dispersion thresholds set to𝑇𝑃 = 2 and𝑇𝐷 = 6, respectively. Finally,
the output chunks were reconstructed into invariants following
the procedure outlined in § 4.5.

3Regional ISP serving upwards of 2M users. Anonymized for submission.

Figure 6: Traffic Volume that Passed CryptoFilter’s Various Pro-
cessing Stages. Both the prevalence and dispersion filters are able
to reduce the volume of traffic by several orders of magnitude.
𝑇𝑃 = 2,𝑇𝐷 = 100.

5.2 Scalability & Privacy Preservation
Scalability is a primary obstacle for all but the most basic, byte-
level pattern matching network analysis system. CryptoFilter’s
privacy-preserving constraint appears at face value to make this
more challenging, but our solution to privacy preservation, namely,
removing unique and likely encrypted communications via tran-
sitive sampling and content sifting, contributes significantly to
solving the scalability problem. Figure 6 presents traffic statistics
for a 31-day period, showing the reduction in traffic volume at each
processing stage. Note that the reduction starts not with the raw
traffic volume received at the mirroring interface (≈ 20 Gbps), but
rather after transitive sampling is applied (≈ 4 Gbps, on average) — a
5x reduction right from the start. These results showcase CryptoFil-
ter’s ability to scale while processing data in memory. Following
the initial 80% reduction from transitive sampling, the prevalence
and the dispersion filters are able to reduce the traffic volume fur-
ther by several orders of magnitude – specifically, the prevalence
filter, with a permissive threshold of 𝑇𝑃 = 2, removes over 99.6%
of the sampled traffic, while the dispersion filter, configured with
a conservative privacy threshold of 𝑇𝐷 = 100, further reduces the
remaining traffic by over 99.97%. Combined, this progressive re-
finement yields hundreds or thousands of invariants, rather than
the billions of raw chunks that would have been produced without
refinement. The reduction makes it significantly more manageable
and ethical for subsequent analysis, both manual and automated,
as not only are there fewer chunks, but they are the most relevant
from a security analyst’s perspective and cannot be attributed to
unique IP addresses.

5.3 End-to-End Analysis
The data can serve both broad and deep analyses of the network
and specific applications within it. An analysis cycle might start by
analyzing aggregate protocol composition and similarities in the
network, followed by mining potential privacy threats. An analyst
could then search for and identify applications with potential pri-
vacy violations, and finally, perform deeper analyses via manual
reverse engineering of threats actually present in the network.
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For analyzing protocol composition, techniques in topic model-
ing algorithms, such as Tf-Idf [49], LDA [5], LSA [30], or Top2Vec [3]
can be used to cluster traffic. Privacy threat mining can either be
conducted on the raw output, or using a packet reconstruction algo-
rithm such as the one detailed in Algorithm 1 in Appendix A.2. App
identification can be performed by correlating CryptoFilter logs
those from complementary tools such as Zeek, Snort, or Tshark.
We opted to correlate CryptoFilter with user-agents and domain
names extracted using Tshark. Finally, specific applications can be
analyzed more deeply using manual reverse engineering to confirm
the presence of security and privacy threats and exposures.

Themodular processing pipeline could be incorporated into secu-
rity units, (SoC team, machine learning, purple team) to proactively
triage exposures or for cyber-risk insurance policies.

5.3.1 Aggregate Protocol View. We visualize CryptoFilter’s abil-
ity to extract semantically meaningful protocol information, even
when protocols are unknown or nested within known protocols
like HTTP, by first applying Top2Vec [3] to the extracted invari-
ants to generate an embedding representation, where each invari-
ant is a word and each flow a document. The combined topic-
/word-embedding representation preserves semantic relationships
between different application and protocol invariants, unlike other
topic models (LDA [5], LSI [30]) which do not. We then apply
UMap [33] to the embedding for dimensionality reduction, yield-
ing the two-dimensional projection in Figure 7. Colored clusters
contain labeled flows (flows with a user agent) while black clusters
contain unlabeled flows (no associated user agent string). We used
HDBScan [8] to cluster flows.

We include specific applications in the annotations to highlight
relationships between specific applications and protocols. For ex-
ample, MicroMessenger is largely distinct from other applications
which is consistent with the fact that it uses the custom “mmTLS”
protocol and is heavily used in Tencent mini-Apps [35, 54]. Mozilla
and “Other” (unlabeled) flows cluster together in proporation to
Mozilla’s representation in the labeled data (67%). Microsoft pro-
cesses cluster together and near “Other” and Mozilla flows, suggest-
ing HTTP is a base layer. Finally, various Sogou services cluster
together and also near browser flows, which is consistent with find-
ings that Sogou is built on top of HTTP [24, 26, 28]. These findings
highlight CryptoFilter’s ability to preserve semantically meaningful
protocol information, even when the application-specific protocol
is unknown or embedded within HTTP. More critically, our results
show that a large proportion of insecure Internet traffic cannot be
attributed to browsers.

5.3.2 Privacy Threat Investigation. Much the same way a sluice
separates gold from dirt and various cruft, CryptoFilter separates po-
tentially serious privacy violations by extracting invariant bytes ad-
jacent to privacy leaks. To illustrate this capability, we use CryptoFil-
ter’s output to sluice for privacy threats automatically. First, we
reconstruct contiguous invariants for flows as outlined in § 4.5.
Next, we apply an LLM to the reconstructed patterns, instruct-
ing it to categorize the patterns into security-related categories
(PII:id, PII:device, PII: others, Location, Javascript, Useragent,
HTTP/HTML, Other). Table 2 presents a sample of reconstructed
patterns categorized in this fashion. This highlights CryptoFilter’s
ability to simultaneously preserve data utility and user privacy.

Table 2 A sample of invariants discovered by CryptoFilter.

PII:id PII:device PII:others Location

username "device_id=" PhoneNumber= countryCode=

urn:uuid: device_ost: User-Ages= this.geolocation

X-Log-Uid= androidUserInfo organization= timezone=

entityId Fce_id":" membership= "cityid":

Javascript Useragent HTTP/HTML Other

return this. User-Agent: Cache-Control font-size:

function() { Mozilla/5.0 onclick= -pixel-ratio:

<script type= Log-Network: <input class= upnp:rootdevice

.getElement ById Micro Messenger HTTP/1.1 Accept: Allow- Credentials:

Table 3 Candidate applications identified traversing ISP-M.

Control- Netease QQBrowser WeChat QQ Music
Related TC-Video Youdao QQ News TC-Comics

DYZB Bilibili Taobao Nat.Karaoke

Previously Sogou UCBrowser dyplayer Tencent
Analyzed Douyin ttplayer MQQBrowser Weibo

Tiktok KakaoTalk Tencent Mobile Manager

Unknown NewsApp Flush Fliggy Ctrip
netdisk ESPN Meituan Iqiyi
QTP;QTP metwatchApp Discover Ting
douban JinShanCiBa Kuaishou AnQuanWeiShi
ZhihuHybrid Tizen Huion Huorong
BossZP Youku Lavf Hpplay
Thunder Dianping SpeedinVPN QuarkBrowser

5.3.3 App Investigation. After identifying potential privacy threats,
the next step is to identify a list of candidate applications for analy-
sis. Table 3 presents the list of candidate applications identified in
the gateway traffic. Unlike for our cluster analysis, which used only
user-agent strings for labels, we adopted a simplified version of the
methodology proposed in [34]. Specifically, we extracted the pro-
tocol stack from the packet and used any available domain/URLs,
substrings of HTTP header fields (e.g., User-Agent), or JavaScript
libraries (if any) to label the traffic.

We used invariants and user agent strigns as search terms to iden-
tify applications. As expected, some of these identified applications
were from our control experiments, as we restricted inspection
of plaintext invariants to those also found in the control exper-
iments. Nevertheless, many chunks were generic (e.g., protocol
framing, common keys), allowing our us to identify apps beyond
the control set. Interestingly, CryptoFilter also identified several
applications that had previously been analyzed by other researchers
andwere confirmed to have issues (e.g., exposed PII or non-standard,
unencrypted transport) [22, 24, 26, 35].

5.3.4 Privacy Threat Confirmation. Just because an application
showed up in Table 3, does not mean it has actual vulnerabilities,
althoughmany of these apps had been previously confirmed to have
transport-layer security issues. Confirmation via manual reverse
engineering is thus necessary. After identifying the list of candidate
applications, we performed manual reverse engineering for eleven
of the applications. We did not include applications that had been
previously analyzed, were not part of our control experiments, and
were not browsers as those are frequently analyzed. For applications
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Figure 7: Top2Vec UMAP Plot: Top2Vec embedding of invariants for 50 apps. Dimensionality reduction using UMAP. Visualiza-
tion representation of unencrypted/poorly encrypted apps present in ISP-M.

originating from the Chinese market, we downloaded them from
the Tencent Appstore and used Google Lens for translation 4.

4Many Chinese apps require real-name verification to access full functionality. Al-
though we were able to register for some of these apps using a U.S. phone number,
prior work has shown that app (security) behavior may vary depending on the region
of registration.

Each target application was analyzed on a Google Pixel 7a de-
vice using a combination of static and dynamic analysis techniques.
We explored different views within the apps to exercise different
code paths, while collecting packet captures that we later manually
analyzed for instances of sensitive data (e.g., IP/MAC addresses,
identifiers, geographic coordinates, and/or non-HTTPS URLs or
HTTP redirects) transmitted in plaintext. We found that eight out of
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the eleven applications leaked a broad range of PII. Below, we pro-
vide an assessment for the most egregiously violating application,
Kuaishou, with the remaining findings provided in Appendix A.3.

Kuaishou: Kuaishou stood out due to the breadth of information
transmitted without encryption. The Kuaishou app includes several
advertising and location libraries, such as AMap, which use HTTP
to transmit user telemetry to their servers for targeted advertising.
Further investigation revealed that it transmits various identifiers,
coarse (e.g., country and city IDs) and fine-grained (e.g., GPS co-
ordinates) geographic information, network connection type (e.g.,
Wi-Fi), the client’s public IP address, device OS, model, processor
architecture, and other metadata related to phone and app con-
figuration. This information is transmitted to remote servers in
different geographic locations. An adversary on the network path
could exploit this information to track users across networks. An
example packet payload of Kuaishou is included in Figure 1.

6 Ethical Considerations
Raw network traffic that contains real user data is inherently sensi-
tive. Here, we describe the ethical considerations involved in our
work, and outline the procedural and technical measures imple-
mented to mitigate these risks.

Foremost among the our ethical considerations processing user
traffic in an upstream Internet gateway. For this, we sought ap-
proval from our institution’s Institutional Review Board (IRB) and
received a “Not Regulated” determination. We also cleared our re-
search with the institution’s network operators and the officers
from the Information Technology department.We note that all live
user traffic processing was conducted on a dedicated monitoring
server managed by ISP-M, which has well-established ethics and
privacy protocols to guide such projects. A ISP-M representative
provided oversight throughout the deployment and testing phases,
and ensured that the access was restricted to select members of
the team on a least-privilege basis. The monitoring server received
only mirrored copies of the traffic, meaning the actual routing and
service quality of end-users remained unaffected.

Our work distinguishes itself from earlier studies (e.g., [10, 11,
21, 51]) by committing to neither storing nor inspecting raw packet
payloads except for the invariants that have demonstrated suf-
ficient dispersion across users of the network. Nonetheless, given
that some members of our team are external researchers to the ISP
(including two non-citizens of the country where the ISP is located),
even viewing these invariants can still raise ethical concerns. For
this, we have implemented additional safeguards to set a higher
standard for similar research. Specifically, we generate a control set
of invariants in a controlled environment, following the procedure
outlined in § 5.1.2. Next, when CryptoFilter generates invariants
from ISP gateway traffic, we restrict ourselves to viewing only those
invariants that also exist in the control set. This ensures that we
only log or view invariants that are known a priori not to correlate
with any individual on the public network.

7 Discussion and Conclusion
The question we stared with was, Can we analyze unencrypted traffic
from real users in a privacy-preserving way? Our design and results

answer this question in the affirmative. Specifically, this paper de-
scribed a design and results that meet the three basic requirements
of being protocol agnostic (§ 5.3.1), privacy-preserving (§ 4.3), and
scalable (§ 5.2).

The biggest challenge moving forward will be to identify a bal-
ance between the privacy-preserving requirement and the utility
of the data for empowering network administrators to identify
the threats to their users and networks. A limitation of our ap-
proach in this paper is that if an invariant is not co-located with
known invariants then we have no visibility into what it is or its
semantic meaning. CryptoFilter, as presented in this paper, is an
excellent complement to existing approaches such as filtering rules
for known protocol fields (e.g., user agents strings), but CryptoFilter
also gives us visibility into proprietary unencrypted protocols that
our current design cannot attribute to specific applications. 90%
of the unencrypted or poorly encrypted traffic that CryptoFilter
identified had no user agent string. A focus of future work will be
to identify these threats to users and networks.

Despite this limitation, CryptoFilter provided valuable insights
into threats to the users and networks served by the Internet gate-
way where we deployed it for this study. Figure 7 gives a clear
picture of what, among apps that include a user agent string, the
network administrators for this network should be aware of. This
includes apps previously known to have problems with poor or
missing encryption [35] (e.g., Sogou [25], com.appled.trustd [40],
KakaoTalk [45], QQ Browser [22], and Redmi Browser [44]), and
others that warrant further investigation (e.g., ESPN, MeDCore,
Roku, RedDownload, and chaturbate.com). It includes update mech-
anisms that are most likely authenticated correctly out of band, but
should be investigated (e.g., Debian APT-HTTP and WindowsUp-
dateAgent). It also includes apps that were not previously known
to expose PII in and unencrypted or poorly encrypted form, but
clearly can be seen to do so with minimal reverse engineering effort
(e.g., QQ Music or iQIYI). And, while much of the traffic identified
in Figure 7 can be attributed to users going to unencrytped websites
with browsers (e.g., Safari, or Mozilla – which is reported as the
user agent string for Chrome and other Chrome-based browsers),
the overwhelming majority of apps identified are not browsers. Not
only do non-browser apps represent a large fraction of apps identi-
fied by CryptoFilter as lacking proper transport-layer encryption,
but a large fraction of those (not shown in the figure because they
lack a user-agent string) use custom protocols that are not built on
top of HTTP. Empowering network analysts with visibility into all
these different types of unencrypted and poorly encrypted traffic
on their networks is critical for security and privacy, and we see
CryptoFilter as a significant first step towards achieving this goal.
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A Appendix
A.1 App Attribution

Table 4 Flow Attribution. Aggregate percent of flows attributed
either a Domain, User Agent, or Javascript library using different
bootstrapping seeds. Percent of flows labeled.

Total Domains User Agents JavaScript

Random 15% .38% .29% 15%
Control Apps 74% 23% 19% 52%
Javascript 76% 47% 46% 28%
HTTP Methods 55% 17% 9% 39%
Location 64% 19% 14% 44%
User-Agent 60% 20% 12% 41%

Table 4 summarizes the percentage of flows we were able to
label using the simplified methodology described in § 5.3.3. Each
experiment type (rows) had a percentage of flows that we could
associate to specific Domain names, applications via its User Agent
string, or JavaScript libraries. In the case of JavaScript, we used
the decoded invariants to check for their presence in JavaScript
files downloaded in plaintext from the control applications. This
approach has two limitations. First, a single or small number of
invariants could come from non-JavaScript sources. We address
this by setting a threshold of twenty for labeling flows with specific
JavaScript files names. The intuition being that the more invariants
that occur from a specific JavaScipt file, the less likely it is to have
occurred erroneously from a different source. The second limitation
is that JavaScript is ubiquitous on the Internet. This fact makes it
unlikely that any real JavaScript transmitted came from a specific
source from our control data, even with thresholding.

Algorithm 1 Reconstructing Invariants from chunks
Input: List of chunks within a packet p, each with an offset, sorted by offset;

chunk size 𝑘
Output: List of reconstructed merged invariants

1: Initialize start as the lowest offset
2: Initialize end as start + 𝑘
3: Initialize invar as p[start:end]
4: while there are unprocessed offset do
5: while nextoff ≤ end do
6: invar += p[nextoff:nextoff+𝑘]
7: Update end to max(end, nextoff + 𝑘)
8: end while
9: Add invar to the list of reconstructed invariants
10: Set start to the lowest unprocessed offset
11: Set end to start + 𝑘
12: Reset invar to p[start:end]
13: end while
14: return List of reconstructed invariants

A.2 Post-processing
Algorithm 1 describes the partial payload reconstruction algorithm
we used during the threat mining use-case in 5.3.2.

One application of post-processing is mining privacy threats.
To do this, we first have to reconstruct flows from the invariant
portions of the packets. We note that invariants may still con-
tain overlapping segments. For an 𝑚-byte partial payload (e.g.,
UniqueUserID=), CryptoFilter will likely output each of its 𝑘-byte
invariants (e.g., UniqueUs, niqueUse, etc.) after the sifting stages.
To reconstruct partial payloads from its component invariants, the
surrounding context of each chunk needs to be considered. Specifi-
cally, every time an invariant is observed in a passing packet, the
system records the flow identifier (the 5-tuple), the packet number
within the flow, and the offset of the invariant within the packet
payload. Next, adjacent or overlapping invariants are merged to
form the partial payload.

A.3 Privacy Threat Confirmation
Table 5 summarizes the privacy and threat exposures we manually
confirmed for eleven applications from § 5.3.4. To identify the spe-
cific applications, we used their user agent string and domain names
present in their traffic as search terms in Google, Google Play store,
Brave, GitHub, Reddit, and X. Upon identifying the applications,
we downloaded them onto a Google Pixel 7a for analysis. We then
created an account if need, agreed to terms of service, and other
pre-initialization requirements. We then selected the application
from the PCAPdroid user interface to capture its traffic. We then
ran explored the application’s user interface for 5-10 minutes as
in the control experiments. To identify privacy and threat expo-
sures, we searched for ASCII encoded strings both by searching
from previously known strings from our control experiments and
by running the Linux “strings” command on the packet captures.
We then loaded the APK into jadx and searched for instances of
the exposures to confirm they were present in the application and
understand their semantics. The exposures are separated in three
broad categories: PII (personally identifiable information, Loc (lo-
cation), and Other.

PII: includes privacy exposures originating from various iden-
tifiers (IDs), typically keys from key-values pairs with the string
“id” or “ID” in the name, MAC addresses, Wifi MAC addresses,
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Table 5 Summary of Identified Insecure Transmission for the Manually Analyzed Apps. indicates a confirmed instances of a
specific privacy risk type.
Applications Kuaishou Fliggy Quark

Browser
Flush Ctrip Thunder Dianping Meituan Iqiyi MedCore ESPN

PII

IDs
MAC
Wifi MAC
IMSI/IMEI
Client IP

Loc
MCC+MNC
GPS
LAC / Zip Code

Other

HTTPSite
Redirects
Hardware Info
OS Info
Device Info
Screen Size
Net. Acc. Type
ELF
Network Info

IMEI/IMSI, and Client IP addresses (the public address of our analy-
sis device). An attacker could use this information to profile specific
users and track them as they traverse networks, changing their IP
address.

Loc: Encompasses location exposures, such as MCC+MNC codes,
GPS coordinates, and Loc or Zip codes. This information is espe-
cially concerning, especially for at-risk users like activists, journal-
ists, or dissidents as there location could be used for targeting by
an adversary.

Other: Encompasses any other type of privacy or threat expo-
sure. In this category, we observed direct and indirect references to

unencrypted URLs, HTTP redirect messages. These could be used
force a server to download compromised resources or redirect them
to an attacker server. Hardware, Operating System (OS), Device in-
formation, screen size, Network Info, and Net. Acc. Type (Network
Access Type), for example, Wifi or Verizon, which could provide
additional profiling features or reconnaissance and later targeted
exploitation. Finally, we observed ELF (Executable and Linkable
Format) files being received by some of the applications. If the
downloading of such a file is not properly authenticated, integrity
and version checked, an attacker could potentially replace the ELF
with malware or a vulnerable version of the software.
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