
Fingerprinting Deep Packet Inspection Devices by their
Ambiguities

Diwen Xue

University of Michigan
Armin Huremagic

University of Michigan
Wayne Wang

University of Michigan

Ram Sundara Raman

University of California Santa Cruz
Roya Ensafi

University of Michigan

Abstract
Users around the world face escalating network interference such

as censorship, largely driven by the commoditization and growing

availability of Deep Packet Inspection (DPI) devices. Once reserved

for a few well-resourced nation-state actors, the ability to censor

and interfere with traffic at scale is now within reach of nearly any

network operator. Despite this proliferation, our understanding of

DPIs and their deployments on the Internet remains limited – being

network intermediary leaves DPI unresponsive to conventional

host-based scanning tools, and DPI vendors actively obscuring

their products further complicates measurement efforts.

In this work, we present a remote measurement framework,

dMAP (DPI Mapper), that derives behavioral fingerprints for DPIs to
differentiate and cluster these otherwise indistinguishable middle-

boxes at scale, as a first step toward active reconnaissance of DPIs

on the Internet. Our key insight is that parsing and interpreting

traffic as network intermediaries inherently involves ambiguities
– from under-specified protocol behaviors to differing RFC inter-

pretations – forcing DPI vendors into independent implementation

choices that create measurable variance among DPIs. Based on

differential fuzzing, dMAP systematically discovers, selects, and

deploys specialized probes that translate DPI’s internal parsing be-

haviors into externally observable fingerprints. Applying dMAP to

DPI deployments globally, we demonstrate its practical feasibility,

showing that even a modest set of 20-40 discriminative probes reli-

ably differentiates a wide range of DPI implementations, including

major nation-state censorship infrastructures and commercial DPI

products. We discuss how our fingerprinting methodology gener-

alizes beyond censorship to other forms of targeted interference,

and we hope our work inspires further measurement efforts toward

greater visibility and transparency into DPI devices deployed across

the global Internet.

CCS Concepts
• Security and privacy→ Firewalls; Social aspects of security and
privacy; • Networks→ Middle boxes / network appliances.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

https://doi.org/10.1145/nnnn.nnnn

Keywords
Deep Packet Inspection, Fingerprinting, Measurement, Censorship

ACM Reference Format:
DiwenXue, ArminHuremagic,WayneWang, Ram Sundara Raman, and Roya

Ensafi. 2025. Fingerprinting Deep Packet Inspection Devices by their Am-

biguities. In . ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/

nnnn.nnnn

1 Introduction
The recent decades have witnessed a troubling escalation in net-

work interference faced by users around the world [55] – rang-

ing from outright censorship [35, 40, 67] and targeted bandwidth

throttling [3, 68] to surreptitious traffic interception or injection

of malicious contents [32, 33, 49]. This trend is fueled in large part

by the increasing availability of specialized network equipment,

particularly Deep Packet Inspection (DPI) devices, which enable

monitoring, inspection, and targeted interference with network

traffic in real-time. While Internet censorship once limited to a

select few well-resourced and motivated nation-state censors, the

commoditization of DPI devices now empowers virtually any ISP

or network operator to implement sophisticated traffic filtering

policies at nearly any network boundary [50, 57].

Despite this rapid proliferation of DPI technologies, our knowl-

edge about DPI devices and visibility into their deployments on

the Internet remain remarkably limited. A wealth of literature has

measured the effects of censorship – documenting which websites

are blocked in specific regions, but has done little to illuminate

the devices enabling such blocking. This gap arises in part because

DPIs operate as network intermediaries rather than endpoints (Fig-

ure 1): they do not often expose open ports on public IPs, nor do

they otherwise respond to typical network scanning, making them

unsusceptible to standard, host-based scanning tools like Nmap or

ZMap [15, 42]. “On-path” DPIs, which act on mirrored traffic out-

of-band, may not even be physically inline with routing, so their

presence becomes virtually undetectable by standard methods.

Further complicating efforts to measure DPIs is a growing trend

among DPI vendors toward obscuring the presence of their devices

and avoiding explicit identification. For example, past research of-

ten relied on explicit blockpages injected by DPIs – often branded

with vendor logos or names – to identify the DPI responsible [50].

However, following a series of controversies and lawsuits expos-

ing the role of certain Western-made DPI products in facilitating

nation-state censorship and surveillance [11, 13, 32, 34, 54], many

vendors have now shifted to more generic and indistinct censor-

ship methods, such as silent packet drops or injecting standard

TCP Resets. This movement is also encouraged by the Internet’s

https://doi.org/10.1145/nnnn.nnnn
https://doi.org/10.1145/nnnn.nnnn
https://doi.org/10.1145/nnnn.nnnn

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

Figure 1: DPIs either directly intercept and modify/drop traf-
fic in-path or passively monitor mirrored traffic on-path and
inject packets.Target refers to remote endpoint towardwhich
we send probes, with the DPI of interest interfering en route.

shift towards HTTPS, since DPIs cannot inject blockpages into en-

crypted traffic. According to public data from Censored Planet [57]

(Figure 2), one of the largest censorship observatories, censorship

by vendor-labeled blockpages has declined by over 85% over the

past six years, replaced by less distinguishable methods.

In this work, we present a remote measurement framework

that derives behavioral fingerprints for DPI devices, enabling re-

searchers to map out, differentiate, and cluster these otherwise

indistinguishable middleboxes at scale. The core insight behind this

reconnaissance method is that ambiguities in how network traffic is
read provides a source of variance across DPI implementations. Such
ambiguities arise from various factors, such as under-specified cor-

ner cases in protocol standards or differing interpretations of RFC

guidelines. For example, the IETF specifications do not prescribe

a canonical way for reassembling overlapping IP fragments [22],

forcing each DPI vendor to independently decide how to handle

such scenarios. Our insight is that these implementation-specific

decisions, whether explicit or implicit, introduce subtle differences

that can be leveraged as behavioral fingerprints for DPIs.

Building on these insights, we design and implement dMAP (DPI

Mapper), a framework that systematically discovers, selects, and de-
ploys specialized network probes that convert DPIs’ internal traffic

parsing ambiguities into externally measurable fingerprints. dMAP
proceeds in three phases: (1) First, we enumerate a broad range of

potentially ambiguous packet sequences with deterministic fuzzing,

guided by a comprehensive survey of past DPI evasion literature, to

generate a large pool of candidate “probes” (§ 3.3). (2) Next, dMAP
filters and selects the most discriminative probes – those that best

differentiate between different DPI implementations – by applying

differential analysis against known DPI products (§ 4.3). (3) Finally,

dMAP conducts large-scale remote probing, observes the behaviors

elicited by each probe from DPIs along the network path, and then

aggregates these observations across multiple probes into a single

behavioral fingerprint for each DPI (§ 4.1 & § 4.2).

We apply dMAP for large-scale remote fingerprinting of DPI

devices across the Internet. We demonstrate the practical feasibility

of our fingerprinting approach, finding that even a modest set of 20-

40 most discriminative probes yields sufficient variance to reliably

distinguish among DPI implementations – even when they employ

identical censorship actions (e.g., all injecting indistinct RSTs). We

observe that DPI fingerprints consistently cluster at the netblock

or Autonomous System (AS) level, suggesting that censorship and

filtering policies tend to be deployed at these administrative scopes.

We identify fingerprint clusters corresponding directly to known

nation-state censorship infrastructures (e.g., Iran’s national fire-

wall), as well as globally deployed commercial DPI products such

as FortiGate. Perhaps most surprisingly, our results reveal multiple

fingerprint clusters within the Great Firewall of China, challenging

the longstanding view of the GFW as a singular, homogeneous sys-

tem. Lastly, tracking fingerprints longitudinally with open-source

DPIs (e.g., Suricata, Zeek), we show that their fingerprints remain

remarkably stable over multiple years and major releases, highlight-

ing the long-term utility of these behavioral fingerprints.

Our work represents a meaningful step toward greater visibility

into the network intermediaries that interfere with users’ traffic on

the Internet. While questions and challenges remain in fully under-

standing these devices, we demonstrate a practical methodology

that allows such middleboxes to be remotely measured and differen-

tiated at scale based on their behavioral fingerprints. Importantly,

we anticipate our fingerprinting methodology to be sustainable
– we discuss why the underlying protocol ambiguities enabling

it are unlikely to vanish or be easily removed by DPI vendors –

and generalizable – extending beyond censorship devices to those

responsible for other forms of targeted interference such as throt-

tling or MITM attacks. We hope this work inspires further Internet

measurement initiatives, collectively advancing the community’s

knowledge, transparency, and accountability surrounding these

traffic-interfering middleboxes deployed across the global Internet.

2 Background & Related Work
2.1 Internet Censorship and Interference
News, anecdotes, and measurement studies collectively suggest

that users’ Internet traffic is increasingly subject to interference by

middleboxes deployed along network paths [35, 40, 55, 57]. Among

the most prevalent forms of such interference is Internet censorship,

which is increasingly practiced by authorities around the world. For

over two decades, researchers have conducted both country-specific

case studies [27, 44, 53, 67] and global-scale censorship measure-

ments [16, 40, 57], documenting censorship methods ranging from

simple IP-based blocking [45, 58], website filtering [21, 46, 52], and

targeted blocking of protocols and circumvention tools [1, 65, 66].

Among these, website blocking over HTTP and HTTPS remains the

most prevalent and most studied censorship form, typically enabled

by DPI devices that inspect the Host header in HTTP requests or

the Server Name Indication (SNI) in TLS Clienthellos [10, 50, 60].

Beyond censorship, prior work also documented other forms of

interference enabled by DPIs, including targeted bandwidth throt-

tling [3, 68], TLS machine-in-the-middle attacks [49], malicious

traffic injection [33] or redirection to malware [32]. This body of

research has exposed otherwise covert practices of network inter-

ferences and advanced our understanding of adversarial middle-

boxes in the networks. Yet, relatively few efforts have focused on

characterizing and identifying the DPI devices that enable such

interference. These DPI devices are the primary focus of our study.

2.2 Censorship Devices
Censorship middleboxes can be broadly classified into in-path and

on-path devices [33, 40], as shown in Figure 1. In-path devices op-

erate directly on the network path and can inject, modify, or drop

packets en route. On-path devices, by contrast, observe a copy of

traffic and can inject packets but cannot directly drop or modify

them. Our fingerprinting methodology accommodates both device

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Figure 2: Different censorship actions observed in Censored
Planet’s HTTP measurements [57]. Explicit blockpages have
increasingly been replaced by less overt RST injections.

Figure 3: Prior fingerprinting efforts focus on installed poli-
cies or artifacts from the enforcement step. We instead fin-
gerprint DPIs based on how they parse and interpret traffic.⋄

types. These censorship devices conceptually operate using a two-

step process [62, 69]. First, the device reads and interprets network
traffic, extracting information of each flow (e.g., domain names)

and evaluating it against preconfigured censorship policies. Next,

if a flow is deemed noncompliant with the policy, the device en-
forces censorship through active actions such as dropping packets

or injecting TCP resets. As we detail in the next section, our ap-

proach leverages implementation-specific differences in the parsing

stage (step 1), while relying on the externally observable censorship

actions (step 2) to detect when these differences arise.

To date, research measuring censorship devices has largely been

approached on a case-by-case, ad-hoc basis. Xue et al. identified

Russia’s TSPU by focusing on domain blocklists, under the assump-

tion that devices administered by the same authority would share

the same censorship policies [67, 68]. This approach, however, ef-

fectively fingerprints configurations rather than implementations,
since the same device elsewhere could easily load a different set

of policies. Dalek et al. and Marczak et al. manually engineered

network-level features, such as IPIDs, from injected packets to fin-

gerprint Netsweeper and Sandvine DPIs [13, 14, 32]. However, such

methods are labor intensive and not easily generalizable. When

DPIs expose external-facing IPs, Dalek et al. also identified them

via certain keywords in their banners, but acknowledged these

cases might be operator misconfigurations rather than standard

practices [14]. In 2020, Raman et al. proposed clustering DPIs by

the blockpages they inject [50]. However, this method relies on

the DPI actively injecting user-visible blockpages – an increasingly

rare behavior, given many devices now favor less overt censorship

actions (e.g., generic RST injection), as shown in Figure 2.

The work most related to ours are Autosonda and Cenfuzz [24,

51], both of which perform mutations to HTTP or TLS requests

to study the rules and triggers of censorship devices. Yet, both

focused on specific geographic regions and primarily examined

application-layer features. We extend these work by developing a

scalable, generalizable approach spanning the network stack for

systematically measuring and fingerprinting DPIs globally.

3 Methodology
The goal of this work is to develop a methodology for fingerprinting

DPI devices in a way that allows researchers to differentiate differ-

ent DPI implementations and cluster similar ones. Ourmethodology

is designed under the following constraints and objectives:

Generality: The technique must be universally applicable to

any DPI that filters traffic at the network level. Importantly, we do

not make assumptions regarding the mechanisms these devices use

to enforce censorship – whether through explicit RST injections,

blackholing, or other methods. We assume the DPI may not produce

self-identifying artifacts (e.g., a blockpage with vendor name).

Black-Box Assumption: We treat DPIs as black boxes, assum-

ing no prior knowledge of their internal logic, configuration, or

codebase. Remote fingerprinting must work without physical ac-
cess to the DPI or its internal states, but rely solely on externally

observable feedback (i.e., pass/block of the connection).

Fingerprinting Implementation, Not Deployments: The
characteristics leveraged for fingerprinting should reflect inherent

aspects of the DPI’s implementation – such as how it parses packets,

reassembles fragments, or manages TCP states – rather than its site-

specific configuration or policies (e.g., which domains are blocked).

While the latter may differ significantly between deployments of

the same DPI product, implementation-specific behaviors tend to

remain consistent across deployments.

In § 3.1, we describe the high-level intuition behind exploit-

ing ambiguities in packet parsing and flow reassembly to elicit

implementation-specific behavior from different DPIs. Then, in §3.2,

we discuss the relationship between these ambiguities and classic

DPI evasion attacks, showing how known evasion strategies often

hinge on the very same parsing discrepancies that provide a source

of variance for fingerprinting. Finally, we survey prior DPI-evasion

literature and catalog the ambiguities exploited, which help inform

the discovery and selection process of our fingerprinting probes.

3.1 Overview: Fingerprinting by Ambiguities
Despite their varying implementations, the high-level intended

functionality of DPIs follows a broadly similar workflow, as shown

in Figure 3: (1) Traffic Ingestion – capture inline or mirrored traffic;

(2) Parsing, Processing, and Content Inspection – analyze packet

structures, optionally perform flow reassembly and track connec-

tion states; (3) Policy Evaluation – determine whether traffic should

be blocked according to predefined rules; and (4) Enforcement –

actively implement blocking measures when necessary.

Previous work on fingerprinting DPIs often leveraged either pol-

icy information (e.g., domain blocklists) or explicit artifacts from

the enforcement step (e.g., identifiable blockpages [50], HTTP head-

ers containing vendor information [14, 34], or signatures of the

injected packets like fixed IPIDs [32]). While these artifacts provide

straightforward fingerprints, they lack generalizability, as they de-

pend heavily on injections with identifying information that many

DPIs increasingly avoid, opting instead for more indistinct methods

like simple packet dropping or generic TCP RSTs.

At the core of our approach is to shift the focus from how DPIs
write to how they read. Instead of relying on detectable signatures

from packet injections, we fingerprint DPIs based on how they

parse, inspect, and interpret network traffic. This approach applies

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

universally, as all DPIs by definition must inspect traffic to evaluate

policies, regardless of their specific method of enforcement.

For any fingerprinting method to be effective, the behavior it

measures must exhibit enough variance across different implemen-

tations. Although all DPIs ideally follow the same conceptual pro-

cess of reading traffic, in practice, traffic parsing and interpretation

contain various ambiguities that can lead to inconsistent handling
of the same packet sequence among different DPI products [19, 48].
These ambiguities generally arise from three factors: first, many

DPIs implement only a subset of the full protocol specifications,

often optimizing for throughput or simplicity [19]. For example,

while many modern DPI engines track TCP connection states, they

may not handle edge cases such as “Simultaneous Open”, where

both client and server send SYN packets during the handshake.

Previous work has shown that some DPIs fail to properly initialize

states when encountering these non-standard handshakes [67]. As

another example, some DPIs take shortcuts when parsing pack-

ets, such as assuming certain packet header lengths rather than

dynamically parsing them [39], leading to divergent behaviors if

the header size deviates from those assumptions.

Second, protocol RFCs often leave certain operational details

such as resource management under-specified, forcing implemen-

tations to make their own design decisions. For example, RFC791

defines IP fragmentation reassembly behaviors but does not specify

how to manage buffers and buffer sizes during the process. Differ-

ent DPI products can adopt different buffer size limits, and these

limits in turn provide variability that helps differentiate one imple-

mentation from another Figure 4 shows a motivating example.

Finally, even when RFCs aim to specify behavior, the use of nat-

ural language inherently leaves room for varied interpretations,

especially under rare edge cases. Prior studies using natural lan-

guage processing have identified many potential ambiguities in

various network protocols [72]. Collectively, these ambiguities can

lead to divergent implementation choices across different vendors,

providing high-variance, measurable differences that form the core

of our fingerprinting approach.

3.2 Evasion-By-Ambiguities
How do we find these ambiguities? In principle, one could design

ambiguity-based probes for DPI fingerprinting through multiple

approaches, ranging from exhaustively analyzing RFC languages to

brute-force fuzzing of every possible packet-field combination. In

this work, however, we choose to ground our probe design in classic

DPI evasion attacks. Two considerations motivate this approach:

Higher Likelihood of Divergence: First, evasion attacks highlight

precisely those ambiguities in the protocol where real DPI imple-

mentations diverge from ideal or reference behaviors. An evasion

attempt succeeds when one DPI accepts and reassembles an am-

biguous packet sequence that an end host mis-parses or drops; i.e.,

these attacks exist precisely because implementations diverge un-

der those conditions. Additionally, empirical evidence has shown

that at least 86.74% (and up to 100%) of evasion strategies effective

against one DPI fail against another [36].

Observable Feedback in a Black-Box Setting: In remote DPI fin-

gerprinting, we treat DPIs as blackboxes and assume no access to

its internal states. That means the only feedback we can reliably

Figure 4: Amotivating example where a fragmentation-based
evasion attempt may succeed or fail based on the DPI’s in-
ternal reassembly buffer size, making its handling of this
ambiguity externally fingerprintable.

measure is a binary signal – whether the connection continues or

has been blocked. Evasion attacks, by definition, exploit exactly

those ambiguities that produce such observable differences when

interpreted differently. For example, consider the ambiguity around

fragmentation buffer size. An evasion attempt (Figure 4) might split

a sensitive request into 𝑁 fragments, succeeding only against DPIs

with reassembly buffers smaller than 𝑁 but failing to evade a dif-

ferent DPI with a larger buffer. Observing the differing blocking

outcomes indirectly reveals the underlying implementation-specific

buffer limit, which can be used for fingerprinting.

Therefore, our approach first surveys existing DPI-evasion liter-

ature to identify ambiguities already validated in real-world censor-

ship contexts for causing observable and divergent DPI behaviors.

3.3 A Survey of DPI Evasion Attacks
To systematically identify promising ambiguities for DPI finger-

printing, we surveyed 31 prior works on DPI evasion attacks tar-

geting open-source, commercial, and nation-state DPI systems. In-

spired by the seminal work of Handley et al. and Ptacek et al. [19, 48],

we adopt a simple taxonomy that catalogs evasions according to the

network layer where the ambiguity arises (IP, TCP, or application)

and whether the ambiguity is intra-packet (related to the parsing

of fields) or inter-packet (connection tracking, reassembly, etc.). It’s
important to note that not all DPI evasions are due to ambiguous

traffic interpretations. For example, we exclude evasions involving

TTL-limited packets, as TTL expiration follows a well-defined pro-

tocol behavior that offers little scope for divergent interpretations.

Similarly, we exclude evasions based on orthogonal mechanisms

such as encrypted tunneling, which bypasses rather than exploits

parser discrepancies. Additionally, in line with our measurement

scope in § 5, we restrict application-layer evasions to HTTP(S),

excluding those targeting other protocols like DNS [20, 43].

Table 1 provides an overview of the ambiguities commonly ex-

ploited in previous DPI evasion attacks. From a fingerprinting per-

spective, this table highlights the aspects of packet sequences most

likely to expose divergent DPI behaviors. Specifically, we see re-

curring emphasis on three main categories of ambiguities: (1) the

parsing of malformed or partially invalid packet fields; (2) the han-

dling of fragmentation reassembly (at IP, TCP, and TLS layer), where

differences in buffer limits or overlap resolution can cause misalign-

ment in how DPIs see stream contents; and (3) the management of

TCP states, especially unusual packet sequences that deviate from

the typical TCP handshake/teardown procedures. Within each cate-

gory, the survey also pinpoints specific fields that appear to be more

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Layer Type Ambiguity Examples/Specifics Reference

IP Fragmentation IP Fragmentation Reassembly - in-order/out-order/overlapping fragments

- max timeout / number of fragments in reassembly buffer

- max disorder allowed (ipfrag_max_dist) [9, 19, 28, 48, 56, 67]

IP Fragmentation IP Fragmentation Semantics - invalid fragmentation offset; invalid MF/DF flag

- min fragment size acceptable for reassembly [19, 48, 56]

IP Packet Parsing Malformed Header Processing - invalid IP options (type/value)

- invalid proto; reserved bit [19, 31, 48]

TCP Packet Parsing TCP Header Processing - invalid TCP Flag combination (syn/rst, ack not set, etc.)
- invalid window / windowscale; urgent pointer processing [2, 5, 6, 8, 19, 28, 31, 48, 56, 63, 64, 73]

TCP Packet Parsing TCP Option Processing - invalid TCP option type

- unsolicited MD5; invalid timestamp; fast open processing [2, 9, 19, 39, 48, 56, 63, 64, 73]

TCP Conn Tracking TCB Creation - packet sequence creating TCB at DPI (single SYN, single ACK, etc.) [4, 5, 8, 10, 28, 36, 48, 63, 67]

TCP Conn Tracking TCB Re/de-synchronization - packet sequences that re-synchronizes/reverses TCB [5, 8, 9, 36, 63, 67, 70]

TCP Conn Tracking TCB Teardown - packet sequences that tears down TCB maintained at DPI

- timeouts, or max number of packets examined in a flow [2, 4, 6–9, 28, 31, 36, 48, 61, 63, 64, 67, 68, 73]

TCP Conn Tracking TCP Stream Reassembly - invalid seq/ack number (seq < ISN, premature/duplicate ack, etc.) [2, 5, 7, 19, 31, 36, 48, 56, 59, 63, 64, 73]

TCP Fragmentation TCP Segmentation - overlapping segments (partial/whole, in-order/out-order)

- min segment size; max number of segments allowed [2, 6, 8–10, 19, 28, 43, 48, 59, 63, 67, 68, 70]

HTTP Request Parsing Request Line Parsing - invalid HTTP version / method

- additional spaces/tabs; alternative delimiters

- multiple requests in TCP packet; keyword location within request [20, 24, 43, 51, 59, 61, 71]

HTTP Request Parsing Host Header Parsing - keyword/hostname permutation (capitalize, remove, pad, alternate) [20, 24, 26, 28, 43, 59, 71]

TLS TLS Record Parsing TLS Record Semantics - Prepending CH records with other TLS records [67, 68]

TLS Fragmentation TLS Record Fragmentation - fragment CH record into multiple TLS fragments [41, 47]

TLS Clienthello Parsing Clienthello Parsing - CH fields permutation (ciphersuite, version); SNI permutation [51]

IP/TCP Malformed packet Checksum - invalid IP/TCP checksum [2, 5, 9, 19, 31, 48, 56, 63]

IP/TCP Malformed packet Length Fields - invalid length fields in IP/TCP/TLS headers/options [2, 9, 19, 31, 48, 56, 63]

Table 1: A Survey of DPI Evasion Attacks. Overview of common ambiguities exploited, categorized by network layer and type. ⋄

prone to divergent interpretation (e.g., TCP flags, IP options, and

sequence numbers, as opposed to IP addresses or ports). In § 4.3.1,

we build on these insights to design a deterministic fuzzing frame-

work that generates candidate fingerprinting probes by permuting

the most ambiguity-prone aspects of network traffic.

It’s worth emphasizing that one dimension we do not consider

in our survey is the effectiveness of each evasion attack. Although

this metric is central to many evasion studies, our goal in this work

is not to evade DPIs, but to identify ambiguities that introduce

measurable variances across implementations. Indeed, a “perfect”

evasion attack that bypasses a broad range of DPIs reveals little

information about which DPI a network is actually using.

Lastly, while we do not claim our survey to be exhaustive, the

high degree of overlap among prior works leads us to believe that

we have captured the classes of ambiguities that are most relevant

for our fingerprinting efforts. Because we focus on the underlying

ambiguities rather than reusing evasion attacks verbatim, complete-

ness in cataloging every specific evasion sequence is not essential.

For example, no fewer than 16 studies describe attacks tied to TCB

teardown ambiguities; even if we missed specific packet sequences

proposed in more recent works, those techniques typically rely on

the same underlying issues in state management. In the next section,

we describe the design of dMAP , our framework that implements

this methodology for discovering, selecting, and deploying probes

to fingerprint DPIs based on their handling of protocol ambiguities.

4 dMAP Architecture and Experimentation
Figure 5 presents an overview of dMAP , our measurement frame-

work for fingerprinting DPI devices. We begin by describing the

probing module in § 4.1, which builds packets according to the

probe configurations provided and performs parallel measurements

against targets. The collected results are then processed byAnalyzer
(§ 4.2), which interprets the raw responses looking at both the con-

trol and test measurements and producing a single verdict for each

probe-target pair. We defer our discussion on how specific probes

are selected to § 4.3, where we describe how we fuzz candidate

probes based on ambiguities identified earlier, and how we select

the most discriminative probes with differential analysis.

4.1 Prober
Prober is the centerpiece of the dMAP framework, responsible for

crafting and sending network probes to measure DPI behaviors.

It takes as input a list of probe configurations, each specifying a

single measurement (i.e., a single transport-layer connection). Ev-

ery probe configuration, written in YAML format, defines a precise

sequence of packets to be sent, starting from the TCP handshake.

For each packet, the configuration allows fine-grained control over

fields spanning all protocol layers, from Ethernet to the application

layer, including both header fields and payload contents. Addition-

ally, each packet definition may optionally specify whether Prober
should wait for a response before sending the next packet (e.g.,

waiting for a SYN-ACK to learn the server’s ISN). Note that the

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

Figure 5: dMAP’s Architecture. The framework sources from open measurement datasets for target (web) servers behind DPIs,
sends probes that are enumerated and ranked based on differential analysis, and analyzes results to produce DPI fingerprints.

destination IP and port, as well as the domain name used in the

application-layer request, are not fixed within the probe config-

uration itself but are supplied at runtime, which allows a single

probe configuration to be reused across multiple measurements. An

example of a probe configuration is provided in the Appendix A.4.

Alongside probe configurations, Prober also takes a list of Targets.
It should be noted that for our measurements, the Targets them-

selves are not the DPI we aim to fingerprint; rather, they are normal

web servers situated behind the DPI of interest, which sits upstream

of the web server and intercepts and filters traffic between Prober
and the Target. For each Target, we specify both a Control Domain

(e.g., example.com), expected to pass through the DPI unblocked,

and a Test Domain (e.g., blocked.com), which is expected to trigger

the DPI’s filtering. The list of Targets can either be measured in an

initial discovery phase or sourced from open datasets released by

censorship observatories such as Censored Planet [57].

At runtime, Prober parallelizes measurements across Targets, but
enforces a strict sequential ordering between consecutive probes.

To support large-scale experiments, measurements using the same

probe configuration but targeting different Targets may reuse the

same source port, provided that no two transport-layer connections

within the same measurement run share the same four-tuple. This

prevents “residual censorship” (lingering blocking state associated

with a particular connection identifier) from affecting subsequent

probes. As an additional precaution, we introduce a 120-second

delay between consecutive probes (even when their four-tuples

are different), a timeout previously found sufficient to clear most

residual censorship effects [60]. For each Probe-Target pair, Prober
first launches a Control Measurement using the Control Domain

in the application-layer request. Next, it runs Test Measurement

using the same packet sequence but substituting the Test Domain.

For each measurement, Prober dynamically tracks the expected TCP

SEQ/ACK numbers, incrementing them based on both outgoing

and incoming traffic. This allows us to specify relative SEQ/ACK

numbers in probe configurations without having to know the Tar-
get’s runtime ISN choice. Finally, for each measurement, Prober
logs all packets sent and received (in JSONL or PCAP) for analysis.

Prober represents themost significant engineering effort in dMAP ,
with over 4000 LOC excluding probe configurations. It is designed

to be highly flexible, supporting arbitrary packet sequences and

fine-grained mutations across protocol layers. Due to space con-

straints, we omit a full description of Prober’s implementation but

refer interested readers to our open-source repository (§ A.2).

4.2 Analyzer
Each entry in Prober’s raw output corresponds to a single measure-

ment, recording the packets exchanged during the measurement.

Analyzer begins by parsing these packet traces and performing a

minimal sanity check (e.g., discarding any measurement that does

not contain a completed TCP handshake). Next, Analyzer annotates
each valid measurement by examining the immediate response

after sending the application-layer request, such as explicit TCP

resets, blackholing (absence of further packets), or, in cases where

an application-layer response is present, whether the response body

matches any known blockpage signatures
1
.

Once individual measurements have been annotated, Analyzer
groups them by the tuple (Target, Probe, isControl), where isControl
indicates whether the measurement used the Control Domain (ex-

pected not to trigger censorship) or the Test Domain (expected to

trigger censorship). Typically, we repeat multiple measurements for

each tuple to account for transient network variations. Within each

group, Analyzer consolidates individual annotations into a single

outcome by prioritizing explicit signals over more ambiguous ones,

based on their relative reliability as indicators of DPI interference.

For example, explicit responses like matched HTTP blockpages

are more conclusive than mere RSTs, which in turn take prece-

dence over blackholing. Likewise, any clear evidence of blocking

outweighs “no blocking”, under the assumption that DPIs might

1
We try to match the response body against a curated open database of known censor-

ship blockpages maintained by Censored Planet [57].

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Results Interpretation Verdict

{R1,R3,R4}{R2} Mutation has no effect on endhost but bypasses DPI Bypass
{R1}{R2,R3,R4} Reference blocking behavior indistinguishable from how end-

host handles mutation, unclear if DPI is triggered in R4

Inconclusive

{R1,R3}{R2,R4} Mutation has no impact on either the DPI or the endhost NoEffect
{R1,R3}{R2}{R4} Mutation does not affect endhost; however, differing blocking

behaviors imply possibly two distinct DPIs in the path

Inconclusive

{R2,R3}{R1}{R4} Possibly two DPIs in path: first drops all packets when trig-

gered (R2), superseding second DPI’s explicit blockpage. Mu-

tation bypasses the first DPI but not the second.

Inconclusive

{R2,R4}{R1}{R3} Mutation affects the endhost but the DPI remains triggered. NoEffect
{R3,R4}{R1}{R2} Could happen when Mutated Control (R3) and Mutated Test

(R4) both yield no response, different from reference behaviors.

Inconclusive

{R1}{R2}{R3}{R4}Mutation affects both the endhost and potentially multiple

DPI implementations in the path that respond differently.

Inconclusive

Table 2: Interpretation of probe outcomes. Each row corresponds
to a unique grouping of responses. {𝑎,𝑏}{𝑥, 𝑦} indicates 𝑎 = 𝑏 & 𝑥 =

𝑦 & 𝑎 ≠ 𝑥 . Some invalid groupings (e.g., {R1,R2}) are excluded.

occasionally fail to block when they should (e.g., under heavy load),

but will rarely produce a conspicuous blockpage by accident.

Next, for each (Target, Probe) pair, Analyzer compares four con-

solidated measurement results to interpret how the mutation intro-

duced by the Probe affects theDPI’s handling of traffic:R1(Reference
Control) – Standard request without any mutation using Control

Domain. R2(Reference Test) – Standard request using Test Domain.

R3(Mutated Control) – Mutated packet sequence supplied with

Control Domain. R4(Mutated Test) – Mutated packet sequence

with Test Domain. Table 2 enumerates common patterns of equiv-

alence or difference among {R1,R2,R3,R4} and the corresponding

interpretation on how the introduced mutation affects the DPI. For

example, the scenario {R1,R3,R4}{R2} indicates that applying the

mutation does not alter the web server’s behavior (since R1=R3=R4),

but effectively prevents the DPI from parsing and recognizing the

blocked domain, since the censorship behavior is only observed

in Reference Test (R2) but not Mutated Test (R4). In that scenario,

Analyzer assigns a “Bypass” verdict for the (Target, Probe) pair.
In rare cases, the four results may yield no conclusive verdict.

Consider the example where R1 (Reference Control) returns a

valid HTTP response, but R2, R3, and R4 all appear blackholed

({R1}{R2,R3,R4}). The apparent similarity between the Reference

Test (R2) and the Mutated Control (R3) suggests that the web server

itself might be discarding the mutated request, making it indis-

tinguishable from a DPI-induced packet drop. Consequently, we

cannot determine if the DPI has been triggered in R4. Analyzer la-
bels such cases as Inconclusive. In Appendix § A.3 we discuss some

approaches we take to reduce the fraction of inconclusive results.

Finally, Analyzer outputs a fingerprint for each Target by con-

catenating verdicts across all evaluated Probes, with 0 indicating the

mutation of the current Probe did not affect the DPI and 1 indicating
the evaluated mutation disrupted the DPI’s ability to interpret traf-

fic. For inconclusive results, Analyzer marks -1 in the fingerprint

and omits that probe from pairwise fingerprinting matching.

4.3 Probe Selection
4.3.1 GenerateCandidate Probes. To generate candidate probes
for fingerprinting, we follow a deterministic, grammar-aware fuzzing
approach guided by known parsing ambiguities identified from

prior work (§ 3.3). There are twomain reasons for this design choice:

(1) Randomly mutating packets as raw bytes (i.e., grammar-agnostic

fuzzing) often produces packets that fail basic validity checks and

are likely discarded by intermediary routers before they ever reach

the DPI. By contrast, grammar-aware fuzzing respects the essen-

tial format and semantics of its underlying protocols, generating

probes that are more likely to trigger meaningful divergences in

DPI behaviors rather than being prematurely discarded. (2) We

systematically enumerate precisely which fields to mutate, as well

as the range of mutating values (inspired by Table 1), such that the

same set of candidate probes is deterministically applied across all

tested DPIs. This allows feature vectors of the resulting fingerprints
to be directly comparable for clustering or differentiation.

We begin with a standard packet sequence that serves as a base-

line template, which consists of 1) a client-initiated SYN packet

(with typical TCP options expected from a Linux client like win-

dowscale and SACK), 2) a corresponding ACK for the server’s SYN-

ACK (with appropriate ACK number), 3) an HTTP GET request or

a TLS Clienthello that resembles one produced by cURL, and finally

4) a FIN/ACK and 5) an ACK to gracefully terminate the connection.

On top of this baseline, we broadly define three types of mutations:

Insertion is a sequence-level mutation that builds and injects

an entirely new packet at a specified point in the baseline sequence.

The inserted packet is crafted with systematically varied fields at

the IP, TCP, and application layers. For example, we vary TCP

flags, SEQ and ACK numbers, checksums, and other header fields.

The inserted packet can contain no payload, random bytes, a well-

formed application-layer request with the Control Domain, along

with others. Each inserted packet can be placed at one of four

defined positions: before the initial SYN, before SYN-ACK, before

the ACK completing the handshake, or after the handshake but

immediately preceding the application-layer request.

Mutation refers to packet-level mutations that affect an individ-

ual packet (either header or payload) from the baseline sequence.

We define mutations for most of the header fields for the IP and

TCP layer, except for the fields that are essential for packet routing

and delivery, such as IP addresses or TCP ports. For HTTP, being a

more expressive text-based protocol, we leverage previously stud-

ied HTTP-specific mutations [20, 43, 51, 59, 71], such as varying

the case of HTTP methods (e.g., GET vs. GeT). The full list of IP and

TCP fields considered for mutations is included in Appendix A.5.

Fragmentation is a multi-packet mutation that can be applied as

IP fragmentation, TCP segmentation or TLS record-layer fragmenta-

tion, which we collectively term as “fragmentation”. Fragmentation-

based mutations control (1) the exact offset where fragmentation

occurs (e.g., splitting a domain name across fragments); (2) the order

in which fragments are sent (in-order vs. out-order); (3) the size

of individual fragments; (4) the total number of fragments created

from the original payload; (5) the time delay between sending con-

secutive fragments (reassembly timeouts). For IP fragmentation in

particular, we also consider “disorder” fragments, where fragments

from different reassembly queues become interleaved (i.e., two sets

of fragments sharing the same IPs but carrying different IPIDs).

A major source of ambiguity in fragmentation handling relates

to overlapping fragments – that is, two fragments containing differ-

ent data intended for the same (or partially overlapped) offsets in

the reassembled packet. For this, we define the following mutation

procedure: first, we build and serialize two byte sequences from the

same application-layer request, with sequence A using the original

domain (i.e., the Control or Test Domain) and sequence B using the

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

Figure 6: Overlapping Fragment Reassembly. Nine unique
alignments occur based on whether 𝑌𝐿/𝑌𝑅 are smaller than,
equal to, or greater than 𝑋𝐿/𝑋𝑅 . Figure inspired by [28].

Algorithm 1 Probe Selection with Entropy and Greedy Correlation

Require:
P: Set of all candidate probes; D: Set of known DPIs (groups)

𝑓 (𝑝,𝑑) ∈ {Bypass,NoEffect, Inc}: outcome of probe 𝑝 on DPI 𝑑 ;

𝜃 : correlation threshold

Ensure:
S: Final subset of selected probes

1: for each 𝑝 ∈ P, compute score[𝑝] ← getEntropy(𝑝,D, 𝑓)
2: P

sorted
← sort(P, by score[𝑝] descending) ; S ← ∅

3: for 𝑝 in P
sorted

do
4: keep← true

5: for 𝑞 ∈ S do
6: if |getPhiCoefficient(𝑝,𝑞,D, 𝑓) | > 𝜃 then
7: keep← false; break
8: end if
9: end for
10: if keep then S ← S ∪ {𝑝 }
11: end if
12: end for
13: return S

same domain but reversed in 16-bit chunks. (Because TCP check-

sums are calculated using one’s-complement on 16-bit chunks, the

second sequence, with only domain reversed and everything else

being the same, remains a semantically valid packet with correct

checksums.) Note that this reversed domain is likely malformed

and therefore unlikely to match any entry in the DPI’s blocklist.

Next, we build fragment 𝑋 that span the byte range [𝑋𝐿 , 𝑋𝑅] from

sequence A, and fragment 𝑌 that span [𝑌𝐿 , 𝑌𝑅] from sequence B.

We ensure that the overlapping portion covers the entire domain

name region so that the fragments “equivocate” over exactly which

domain is used. As shown in Figure 6, we define mutations cor-

responding to each of the nine possible alignments of fragment

boundaries (𝑋𝐿 , 𝑋𝑅 , 𝑌𝐿 , 𝑌𝑅). Finally, we send the fragments and ob-

serve whether the DPI is triggered, which allows us to infer which

domain is present in the reassembled packet and, in turn, how the

DPI handles overlapping in fragmentation reassembly.

During probe generation, we may allow our fuzzer to apply up

to 𝑁 mutations per probe. We note that even with 𝑁 = 1, this

process yields 2,621 HTTP-based probes and 2,590 HTTPS-based

probes, which, as we show in the next subsection, already introduce

substantial variance in DPI behaviors. One-mutation-per-probe also

simplifies root-cause analysis (§ 4.3.3) by isolating the effect of an

individual mutation. Therefore, in this work, we restrict our probe

generation to single-mutation probes (𝑁 = 1). We note that single-

mutation already covers the vast majority of known evasion attacks

cataloged in our evasion survey.

4.3.2 Filter and Select Probes. From the pool of candidate probes,

we aim to filter and select those that are most discriminative – i.e.,

those that elicit the greatest diversity of behaviors across different

DPI implementations. Doing so requires access to a set of known
DPIs. Acquiring such a set, however, proved one of the most chal-

lenging tasks for this work, as most DPI hardwares are costly and

often require separate licenses to enable key filtering features. For

this, we ultimately assembled our set of knownDPIs from three com-

plementary sources: Open source DPIs (4): We configured four

popular open-source DPIs (zeek, nDPI, Suricata, and Snort). Com-
mercial free trials (3): We also deployed three leading commercial

firewalls offered as free trials through the AWS Marketplace (Cisco

Secure Firewall, Fortinet FortiGate, and Sophos UTM 9) in a Virtual

Private Cloud. DPIs with identifying blockpages (11): Finally,
we leveraged public measurement data from the Censored Planet

Observatory [57]. Over one week in February 2025, Censored Planet

recorded measurements to 251 remote endpoint addresses show-

ing injected blockpages, of which 95 contain vendor-identifying

information that is attributable to 11 distinct DPI vendors. We then

tested the pool of candidate probes on these known DPIs.

Pre-filters.We begin by discarding any probes that consistently

yield uniform responses across all tested DPIs. Such probes offer

no discriminative power, often because their mutations are either

too trivial that have no observable effect (e.g., inserting an empty

ACK after handshake) or too disruptive that all DPIs discard them

(e.g., mutating the proto field in the IP header). Next, we remove

probes whose outcomes frequently (≥ 10%) lead to inconclusive

interpretations, as defined earlier in Table 2. These inconclusive

probes provide limited discriminative value. Through this pre-filter

step, we reduce the pool of candidate probes by around 70% (2,621

to 702 for HTTP, and 2590 to 708 for HTTPS).

Ranking probes by Entropy. Fromhere, our selection of probes con-

ceptually followed a “Maximum Entropy, Minimum Redundancy”

approach, as outlined in Algorithm 1. We begin by treating the

outcome of each probe as a binary feature, and measure its capacity

to separate the known DPIs by calculating the Shannon entropy of

each probe’s distribution of Bypass/NoEffect across all distinct DPI
groups. Intuitively, a probe that splits distinct DPIs roughly evenly

(e.g., half the DPI groups bypassed, half not) has higher entropy

and is thus more discriminative. We rank the remaining candidate

probes in descending order of their entropy.

Greedy probe selection with correlation check. Next, we apply a

greedy selection algorithm (Algorithm 1) in which we iteratively

select the highest-entropy probe and compute its phi coefficient

with each probe already in the selected set. We only add the new

probe if its minimum pairwise correlation with the existing set is

below a threshold (we used 𝜙 = 0.85, determined empirically). This

ensures that each newly added probe contributes new information

rather than duplicating the effect of a probe already in the set (e.g.,

if two mutations are closely related). For example, two probes might

both divide the DPIs into two equal halves (thus both having the

highest entropy), but if they partition the groups identically, adding

both would be redundant. Table 5 in Appendix lists the top 40
probes selected from this process for HTTP and HTTPS.

Number of probes used. Finally, a decision needs to be made re-

garding how many of the selected probes to include in real-world

measurements. Figure 7 shows that with as few as ten probes, our

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Figure 7: Minimum and average pairwiseHamming distances
among known DPIs from different vendors, plotted against
the number of top N probes used.

Figure 8: MDS of 20-probe fingerprints using Hamming dis-
tance. Each is an endpoint that, when probed, triggered
vendor-identifying blockpages by DPI; colored by vendor.

current DPI set is already fully distinguishable – though the set is

limited in its size. As additional probes are added, the minimum

and average Hamming distance among DPIs continue rising nearly

linearly. With 20 probes, the average pairwise distance is approx-

imately ten bits, meaning about half of the fingerprint bits differ

between any two DPIs. Eventually the curve plateaus after 30-40

probes, where the marginal benefit of adding more probes begins to

diminish. In practice, the number of probes must balance improved

discrimination against the increased measurement overhead: each

probe run (including Control & Test, and a conservative wait in-

between) requires around 140 seconds in our setup, so more probes

per target constrains the scale of targets can feasibly be tested.

As an example, Figure 8 presents a two-dimensional Multidimen-

sional Scaling (MDS) plot based on 20-bit fingerprints produced

by our top-20 probes. Each point represents one endpoint (from

the Censored Planet dataset) for which an in-path DPI injects a

vendor-identifying blockpage, with color-coding by vendor. The

axes represent a two-dimensional projection whose Euclidean dis-

tances approximate the Hamming distances among fingerprints.

We observe that endpoints associated with the same blockpage ven-

dor generally cluster together, yet each cluster also exhibits some

internal spread. This variation likely reflects the reality of remote

measurement where additional in-path network devices (e.g., other

middleboxes) may modify traffic before it reaches the DPI. We dis-

cuss this limitation further in § 6.2. Despite these noise factors, most

endpoints associated with the same vendor’s blockpage still end

up meaningfully closer to each other than to endpoints associated

with different vendors.

4.3.3 RootCauseAnalysis. An advantage of using single-mutation

probes is that each probe can often be traced to a specific ambigu-

ity in traffic interpretation. Coupling this with open-source DPIs

affords us an opportunity to understand why certain probes dis-

criminate among DPIs. For example, one of our top-ranked probes

(listed in Table 5) mutates the sequence number (𝑆𝐸𝑄) of the packet

with the triggering request. Specifically, it sets the 𝑆𝐸𝑄 to a negative

value relative to the client’s initial sequence number, which places

the 𝑆𝐸𝑄 outside the receiver’s window, but also prepends the pay-

load with padding bytes to align the portion of payload containing

the request exactly at the next expected sequence number.

Mutate{layer:TCP;field:seq;option:negativeSeqWithPadding}

𝑝𝑎𝑐𝑘𝑒𝑡0: [SYN (seq=𝐼𝑆𝑁𝑐𝑙𝑖𝑒𝑛𝑡 , ack=0)]

\\ waiting for incoming ([SYNACK (seq=𝐼𝑆𝑁𝑠𝑒𝑟𝑣𝑒𝑟 , ack=𝐼𝑆𝑁𝑐𝑙𝑖𝑒𝑛𝑡+1)])

𝑝𝑎𝑐𝑘𝑒𝑡1: [ACK (seq=𝐼𝑆𝑁𝑐𝑙𝑖𝑒𝑛𝑡+1, ack=𝐼𝑆𝑁𝑠𝑒𝑟𝑣𝑒𝑟+1)]

𝑝𝑎𝑐𝑘𝑒𝑡2: [PSH/ACK (seq=𝐼𝑆𝑁𝑐𝑙𝑖𝑒𝑛𝑡 -100, ack=𝐼𝑆𝑁𝑠𝑒𝑟𝑣𝑒𝑟+1,

payload=[0]*101 + request[TestDomain])]

𝑝𝑎𝑐𝑘𝑒𝑡3−4: [FIN/ACK...], [ACK ...]

This probe triggered a censorship response from Snort (v3.6.0),

but failed to trigger a response from Zeek (v7.0.4). Inspecting their

source code (Figure 14, 15 in Appendix), we found that while both

DPIs discard packets with invalid 𝑆𝐸𝑄 , their definitions of “invalid”

diverge. Zeek simply compares the current 𝑆𝐸𝑄 to the client’s ini-

tial sequence number; if the current 𝑆𝐸𝑄 is lower, Zeek labels the

packet as “seq_underflow” and considers its payload invalid for re-

assembly. In contrast, Snort implements a more nuanced validation:

it checks whether the current 𝑆𝐸𝑄 falls below the upper boundary

of the receiver’s window (𝑠𝑒𝑞 ≤ 𝑟𝑐𝑣_𝑛𝑒𝑥𝑡 +𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒), and also

whether the last byte of the payload is above the lower boundary

of the receiver’s window (𝑠𝑒𝑞 + 𝑙𝑒𝑛(𝑝𝑎𝑐𝑘𝑒𝑡) ≥ 𝑟𝑐𝑣_𝑛𝑒𝑥𝑡). Note that

there is no lower bound for 𝑆𝐸𝑄 to be valid. As such, the part of

the payload that is in-window is then processed by Snort for flow

reassembly, and eventually triggers its censorship policy. In this

case, the subtle mismatch in how Zeek and Snort handle partially

out-of-window segments enables a remote prober to distinguish

the two implementations.

Mutate{layer:TCP;field:option;option:timestamp}

𝑝𝑎𝑐𝑘𝑒𝑡0: [SYN (timestamp: 1000)]

\\ waiting for incoming ([SYNACK (timestamp: 2000)])

𝑝𝑎𝑐𝑘𝑒𝑡1: [ACK (timestamp: 1001)]

𝑝𝑎𝑐𝑘𝑒𝑡2: [PSH/ACK (timestamp: 999, payload=request[TestDomain])]

𝑝𝑎𝑐𝑘𝑒𝑡3−4: [FIN/ACK...], [ACK ...]

Another example involves mutating the TCP timestamp (𝑇𝑆𝑣𝑎𝑙)

of the request packet. Specifically, the probe selects a 𝑇𝑆𝑣𝑎𝑙 lower

than that of the preceding packet. For Zeek and nDPI, this mutation

has no impact – both DPIs continue to process the packet, ulti-

mately triggering a censorship response. Snort, however, discards

the packet, so no censorship response is observed.

Snort’s behavior stems from its implementation of “Protection

Against Wrapped Sequences” (PAWS), a mechanism defined in

RFC7323 [23] that discards segments if their 𝑇𝑆𝑣𝑎𝑙 is smaller than

timestamps recently observed on the same connection. The fact

that Zeek and nDPI do not implement this check allows them to

be distinguished from Snort. Interesting, Snort’s implementation

(Figure 16 in Appendix) also deviates from the RFC’s specification:

the RFC states that if a connection has been idle long enough, the

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

result from the PAWS check should be “invalidated” (i.e., the packet

should be accepted). Snort developers, however, interpreted “invali-

date” to mean invalidating (discarding) the packet itself rather than

the PAWS check, resulting in the exact opposite of RFC-intended

behavior. We have reported this issue to Snort developers. This

example reinforces how, even when implementations strive for

RFC compliance, differences in implementers’ interpretations can

introduce ambiguities that ultimately enable fingerprinting.

5 Measurement
We applied dMAP for large-scale measurements to fingerprint in-

path/on-path DPI devices filtering HTTP and HTTPS traffic, based

on our methodology developed in the previous sections.

5.1 Measurement Setup
All measurements were performed from a dedicated measurement

machine hosted in North America, administered by the research

department of a regional, education-focused ISP. Because some of

our probesmutate IP-layer fields, we took steps to ensure that egress

traffic was minimally normalized by the local network environment.

For example, we verified that no local middlebox or router was

reassembling IP fragments before they leave our network
2
. We

began our measurements in early February 2025.

Input list of Probes We drew on the procedure described in

§ 4.3 to select the top 40 probes for HTTP and HTTPS. Of the 40, 21

probes were common to both protocols. Table 5 in Appendix lists

these probes along with descriptions of their specific mutations.

Input list of Targets Our fingerprinting measurements incur a

non-trivial time overhead—around 140 seconds for each of the 40

selected probes. This makes it infeasible to blindly test the entire

IPv4 space with dMAP directly. Instead, we supplied dMAP with a

curated list of Targets already known to have DPIs interfering with

HTTP/HTTPS traffic along the network path. We gathered these

Targets from open measurement data provided by the Censored

Planet Observatory from February 2025 [57]. Specifically, we took

every IP/port combination where blocking (e.g., RST injection) was

detected for at least one domain tested by CP. If multiple domains

triggered censorship for the same target, we randomly selected

one to be used as the Test Domain for dMAP measurement. In

total, this produced 11,467 unique Targets for HTTP and 22,092

for HTTPS, spanning 482 network prefixes (based on the Route-

views [12] dataset from CAIDA), 179 ASes, and 73 countries. We

probed each target three times using each of the 40 selected probes,

launching over 3 million measurements in total. We describe the

ethical considerations in our measurement design in Appendix A.1.

5.2 Measurement Results
5.2.1 Fingerprint Clustering at Network, AS, and Country Levels. We

first examined the pairwise similarity between targets’ 40-bit DPI

fingerprints, focusing on how this varies at different network scopes.

Figure 9 shows the distribution of pairwise Hamming distances

for all target pairs and compares it with the same distribution

2
We note that even if there had been filtering that neutralized specific mutations (e.g.,

reassembling all outbound IP fragments), it would naturally emerge during probe

selection as a uniform response across all tested DPIs. Such probes would then be

discarded due to low discriminative power.

Figure 9: Normalized distribution of pairwise fingerprint dis-
tances for all pairs of targets, pairs sharing the same netblock
prefix, pairs from the sameAS, and pairs in the same country.

Figure 10: Distribution of the top clusters on the 40-bit finger-
prints. Bar segments colored by country, with the number on
top indicate the number of unique countries in that cluster.

for target pairs within the same netblock, Autonomous System

(AS), or country. The overall distribution (leftmost) is quite spread,

indicating the overall diversity of DPI behaviors elicited by our

probes. However, looking at narrower network scopes, targets from

the same netblock or AS generally have more similar fingerprints.

For example, only < 1% of all target pairs have a Hamming distance

of 0, but this fraction jumps to 44.97% and 36.09% (HTTP/HTTPS)

among pairs in the same AS, and to 52.60% and 52.33% among pairs

in the same netblock. That means a substantial fraction of pairs

sharing the same netblocks also share the exact identical 40-bit

fingerprint, suggesting that censorship policies at a given network

or AS level are often enforced by the same DPI devices or at least

highly similar implementations.

Next, we applied HDBSCAN [30], a hierarchical density-based

clustering method, to group targets by their 40-bit DPI fingerprints.

Unlike many clustering algorithms, HDBSCAN does not require

specifying the number of clusters a priori; instead, it identifies “core”

regions of density automatically, an advantage when we do not

know the variety of DPI implementations in the wild. In total, we

find 203 clusters that have at least 20 targets. Figure 10 shows the

top discovered clusters: the majority of clusters indicate localized

deployment of a particular DPI product or configuration that is

prevalent in just one region, while some span multiple countries—

possibly reflecting more globally distributed commercial solutions

adopted by different networks. For HTTP measurements return-

ing blockpages, we cross-referenced the responses with Censored

Planet’s database of known blockpages to corroborate our results.

For example, 100% of targets in clusters #8 and #23 are located

in Iran and emit a blockpage identified with Iran’s national fire-

wall [7, 29], while 97% of targets in cluster #63 produce blockpages

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Figure 11: Distribution of distances (w/ 21 protocol-agnostic
bits) between 1) HTTP and HTTPS fingerprints from same
IP vs. 2) randomly paired fingerprints from different IPs.

consistent with FortiGate firewalls. Notably, targets from cluster

#63 are spread across 13 different countries, yet they share very

similar 40-bit fingerprints due to (presumably) the similarity in

their underlying DPI implementations.

A more unexpected finding emerged from our measurements

in China: instead of forming a single monolithic cluster, Chinese

targets split into multiple clusters (e.g., #178, #179, #200, #170, and

#183). Although prior research often characterizes the Great Fire-

wall of China (GFW) as highly uniform, our observation indicates

some variability among different Chinese ASes. At the netblock

level, this separation is even more clear – most CN netblocks ap-

pear in only one cluster each. This result suggests that while the

effect of censorship (i.e., which sites are blocked) may remain con-

sistent across the country, the implementation of censorship may be

less homogeneous than previously assumed. These discrepancies

could reflect different versions of the DPI infrastructure colloquially

known as the “GFW”, or the existence of additional middleboxes

deployed at the regional or provincial levels. Regardless, these ob-

servations clearly challenges the conventional view of the GFW as

a singular, homogeneous firewall.

5.2.2 HTTP & HTTPS fingerprints. Our fingerprinting probes in-
clude 21 TCP/IP-layer probes that are shared across and agnostic

to the application-layer protocol. Using these 21 shared probes, we

compare the partial fingerprints for targets tested under both proto-

cols. We filtered our results to retain only those target IPs for which

we obtained valid fingerprints in both HTTP and HTTPS measure-

ments, and we further restricted our analysis to include only targets

measured using the same Test Domain for both protocols to reduce

the possibility of triggering different DPIs with different domains.

In total, we identified 4,147 unique targets (“common targets”) for

which we have paired HTTP and HTTPS fingerprints.

Figure 11 shows the distribution of Hamming distances between

HTTP and HTTPS fingerprints across the 4,147 “common targets”,

using the 21 shared bits. For comparison, we also plot baseline dis-

tribution of distances between randomly paired fingerprints from

different IPs. The results reveals that fingerprints at the TCP/IP

layer remain highly consistent for the same target across the two

protocols: ≥ 50% of “common targets” exhibit identical, protocol-

agnostic fingerprints, while almost 80% differ by at most one bit.

This level of similarity is significantly higher than the baseline

random pairing, indicating that the DPI implementations filtering

HTTP and HTTPS traffic along the same network path are typi-

cally identical (i.e., same device) or, at minimum, share substantial

commonality in their TCP/IP-layer processing logic.

Figure 12: MDS plots showing DPI fingerprints for CN targets,
obtained from single-shot measurements vs. aggregations
from 3/5/10 repeated measurements.

Figure 13: Longitudinal changes in their 40-bit fingerprints
(hex-encoded) for Suricata and Zeek across version releases.

5.2.3 Fingerprinting in noisy environments. In examining per-country

fingerprint clustering, we noticed that targets from China (CN),

Turkey (TR), and Cuba (CU) exhibited substantially higher pair-

wise distances within their clusters compared to other countries.

A closer look revealed that censorship in these regions often fails

to trigger consistently. Even using the same Test Domain and an

otherwise identical packet sequence, repeated measurements found

different DPI behaviors (Blocking vs. NoBlocking) 12.20% of the time

for targets in CN and 16.49% for TR—compared to a global aver-

age of 1.68%. As a result, noise from inconsistent blocking causes

“bit-flipping” in the measured fingerprints.

One way to mitigate such inconsistencies is through repeated

measurements. Specifically, we can repeat each probe multiple

times, and then aggregate the outcomes by prioritizing any ob-

served “blocking” over “no-blocking”, under the assumption that

most DPIs fail-open rather than fail-close (refer to § 4.2). Figure 12

visualizes the effect of repeated measurements using MDS plots

for CN fingerprints, comparing single-shot measurements versus

aggregations from three and ten repeated measurements. Clearly,

repeated probing significantly reducesmeasurement noise from spo-

radic blocking, resulting in tighter and more coherent fingerprint

clusters. These results suggest a practical trade-off: measurements

must balance the increased overhead from repeated probing against

the noise level of the DPI environment being fingerprinted. Encour-

agingly, our data indicate that the reliability of DPI blocking in most

other countries remains high enough to produce stable fingerprints

without requiring extensive repetitions.

5.2.4 The churn rate of fingerprints over time. To better understand
how DPI fingerprints change over time, we performed repeated

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

measurements on a selected subset of targets over a span of two

weeks. For this measurement, we selected a subset of 1,044 HTTPS

targets (excluding CN) that presented Extended Validation (EV) TLS

certificates—these targets typically belong to large organizations

that are more stable over time for repeated probing, and their ad-

ministrators likely have more resources to examine inbound traffic

if needed (although we note our repeated measurements sent less

than 40 Kilobytes of traffic per day per target). Each day for 14 days,

we applied the same set of 40 probes and compared the resulting

fingerprint to that of day one. Across the two-week period, most

targets maintained an identical 40-bit fingerprint, with only 6.5%

targets’ changed by more than a single bit, and another 8.1% no

longer listening on the probed port.

To examine how DPI fingerprints change over a longer timescale,

we examined the fingerprint evolution of two popular open-source

DPIs – Zeek and Suricata – across their past docker releases. We

tested 43 historical versions of Zeek, from version 4.0.0 through

the latest version 7.1.0, covering roughly four years, as well as

37 versions of Suricata, from version 5.0.0 through the latest ver-

sion 7.0.8, spanning over five years. Figure 13 plots the cumulative

bit-differences in each DPI’s fingerprint relative to their earliest

tested version. Notably, Zeek’s fingerprint remained remarkably

consistent across three major releases, indicating that while new

features may have been added, its underlying packet-parsing and

flow-tracking logic remained largely unchanged. Suricata’s finger-

prints underwent two noticeable changes over the five-year span,

for both HTTP and HTTPS. These results suggest that DPI finger-

prints – at least for these open-source implementations – might not

change frequently enough as to demand constant re-measurement.

6 Discussion
6.1 Long-Term Viability of DPI Fingerprinting
One question we ask ourselves is whether the proposed DPI fin-

gerprinting methodology will remain effective in the long term. Is

the variance in DPI behaviors that enables fingerprinting merely a

transient phenomenon of buggy implementations, or will this vari-

ance persist? Reflecting on lessons learned from the history of TLS

fingerprinting [18], we see two potential scenarios under which

DPIs could cease being fingerprintable under our methodology, and

we discuss why neither is likely to occur in practice.

First, individual DPIs can stop being fingerprintable if they con-

verge on the same, “mainstream” behaviors for parsing and in-

terpreting traffic ambiguities. A parallel example can be found in

TLS: certain censorship circumvention tools now try to mimic the

clienthello structures (e.g., ciphersuites, extensions, etc.) of popu-
lar browsers, effectively converging their fingerprints to the much

larger set of browser-generated TLS traffic. For DPIs, however,

achieving such convergence appears significantly less feasible. Ven-

dors tend to disagree on how to interpret corner cases left ambigu-

ous by RFCs (which is what enabled our work in the first place), and

these differences reflect genuine uncertainty or differing priorities

(e.g., fail-open vs. fail-close). Furthermore, the “correct” interpre-

tation of traffic for DPIs can sometimes depend on the behavior

of the end-host that ultimately receives the traffic. For example,

operating systems vary widely in their handling of overlapping IP

fragments [48], so the “correct” DPI behavior – that aligns with

the endhost – is inherently context-specific. As such, there is no

strong incentive or mechanism for DPI vendors to adopt identical

“reference” implementations.

Another scenario involves DPI vendors actively deploying de-

fenses to resist fingerprinting. For example, previous proposals

suggest placing “traffic normalizers” upstream of DPIs to resolve

ambiguities before the traffic reaches the DPI [19, 56]. Yet, this

merely shifts the target: now the normalizer itself becomes the new

fingerprinting target. Alternatively, DPIs could introduce random-

ness into their behaviors, analogous to Chrome’s recent adoption

of randomized TLS extension ordering to avoid having one static

TLS fingerprint [38]. For example, DPIs might introduce proba-

bilistic blocking when triggered, deliberately adding noise to their

fingerprints. Yet, such randomness would directly undermine the

reliability of traffic filtering, resulting in occasional failures to block

content that should be censored. We believe such proposition –

sacrificing reliability to resist fingerprinting – is unlikely to be ap-

pealing to vendors given the fundamental goals of DPI deployment.

6.2 Limitations
A key limitation of our fingerprinting methodology relates to the

inherent constraints of remote measurement. In some cases, there

may be a middlebox along the network path that partially or com-

pletely alters our probing traffic before it reaches the DPI of interest.

For example, if a router en route reassembles IP fragments and sends

only the reassembled packets onward, our IP-fragmentation-based

probes will be nullified. More challenging still is the presence of

multiple DPIs along the network path. If two distinct DPIs enforce

overlapping censorship policies, our measured fingerprint will re-

flect a compound behavior from the two DPIs combined, and it

would be hard to isolate and fingerprint either one independently.

While we attempt to detect these situations with our Analyzer (Ta-
ble 2), fundamentally we cannot guarantee that each measured

fingerprint corresponds solely to a single DPI deployment.

While remote fingerprinting provides large scale, a limitation

is that we cannot measure DPIs that apply censorship policies

asymmetrically – DPIs that apply filtering selectively depending

on the direction of the traffic. One such example that we are aware

of is Russia’s TSPU system [67], which examines and enforces

censorship on outbound connections originate from Russian hosts

but does not filter inbound connections. In such cases, probing from

an external vantage point may not trigger censorship, rendering

the DPIs effectively invisible to our fingerprinting. Future work

could apply our methodology from in-network vantage points to

capture these behaviors.

6.3 Fingerprinting Other Targeted Interference
While this work has focused on DPI devices, the underlying fin-

gerprinting approach can naturally extend to other middleboxes

that selectively interfere with traffic – such as targeted throttling

or TLS man-in-the-middle. Our fingerprinting methodology only

requires two essential conditions: 1) the middlebox inspects and

interprets packet flows to evaluate the configured policy (i.e., in-

discriminate interference, such as complete Internet shutdowns,

fall outside the scope); and 2) once triggered, the interference is

externally observable (e.g., RST/blockpage injection for censorship,

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

lowered throughput for throttling, or altered TLS certificates for

MITM). Future work can adapt this generalizable methodology to

characterize and understand other types of interfering middleboxes.

7 Conclusion
In this paper, we explore the practicality of exploiting the inherent

ambiguities in traffic parsing and interpretation to derive behav-

ioral fingerprints for DPI devices. Our experiments demonstrate

that even a modest set of 20-40 carefully crafted packet sequences

(“probes”) provides sufficient discriminative power to effectively

differentiate and cluster black-box DPI implementations. We hope

our work expands the community’s visibility into these traffic-

interfering middleboxes and encourages broader measurement ef-

forts toward greater transparency and accountability of DPI deploy-

ments across the global Internet.

References
[1] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How China

Detects and Blocks Shadowsocks. In Internet Measurement Conference. ACM.

https://censorbib.nymity.ch/pdf/Alice2020a.pdf

[2] Abderrahmen Amich, Birhanu Eshete, Vinod Yegneswaran, and Nguyen Phong

Hoang. 2023. {DeResistor}: Toward {Detection-Resistant} Probing for Evasion

of Internet Censorship. In 32nd USENIX Security Symposium (USENIX Security

23). 2617–2633.

[3] Collin Anderson. 2013. Dimming the Internet: Detecting Throttling as a

Mechanism of Censorship in Iran. Technical Report. University of Pennsylvania.

https://arxiv.org/pdf/1306.4361v1.pdf

[4] Anonymous. 2009. GFW Technical Report: Intrusion Prevention System Review

and Issues. (2009). https://www.chinagfw.org/2009/09/gfw_21.html

[5] Dave Levin Kevin Bock, LH Merino, D Fifield, A Housmansadr, and D Levin. 2020.

Exposing and circumventing China’s censorship of ESNI.

[6] Kevin Bock, Yair Fax, and Dave Levin. 2021. Evading SNI Filtering in India with

Geneva. https://geneva.cs.umd.edu/posts/india-sni-filtering/

[7] Kevin Bock, Yair Fax, Kyle Reese, Jasraj Singh, and Dave Levin. 2020. Detect-

ing and evading {Censorship-in-Depth}: A case study of {Iran’s} protocol
whitelister. In 10th USENIX Workshop on Free and Open Communications on

the Internet (FOCI 20).

[8] Kevin Bock, George Hughey, Louis-Henri Merino, Tania Arya, Daniel Liscinsky,

Regina Pogosian, and Dave Levin. 2020. Come as you are: Helping unmodi-

fied clients bypass censorship with server-side evasion. In Proceedings of the

Annual conference of the ACM Special Interest Group on Data Communication

on the applications, technologies, architectures, and protocols for computer

communication. 586–598.

[9] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019. Geneva: Evolv-

ing censorship evasion strategies. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. 2199–2214.

[10] Kevin Bock, Gabriel Naval, Kyle Reese, and Dave Levin. 2021. Even censors have a

backup: Examining china’s double https censorship middleboxes. In Proceedings

of the ACM SIGCOMM 2021 Workshop on Free and Open Communications on

the Internet. 1–7.

[11] Business and Human Rights. 2020. Belarus: Sandvine supplied technology

used by the govt. to shut down internet and repress protests; company can-

cels contract. https://www.business-humanrights.org/en/latest-news/belarus-

us-company-sandvine-supplied-technology-used-to-shut-down-internet/

[12] CAIDA. 2010. Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4 and

IPv6. https://www.caida.org/catalog/datasets/routeviews-prefix2as/

[13] Jakub Dalek, Lex Gill, Bill Marczak, Sarah McKune, Naser Noor, Joshua Oliver,

Jon Penney, Adam Senft, and Ron Deibert. 2018. Planet Netsweeper. (2018).

[14] Jakub Dalek, Bennett Haselton, Helmi Noman, Adam Senft, Masashi Crete-

Nishihata, Phillipa Gill, and Ronald J Deibert. 2013. A method for identifying

and confirming the use of URL filtering products for censorship. In Proceedings

of the 2013 conference on Internet measurement conference. 23–30.

[15] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2013. {ZMap}: Fast
internet-wide scanning and its security applications. In 22nd USENIX Security

Symposium (USENIX Security 13). 605–620.

[16] Kathrin Elmenhorst, Bertram Schütz, Nils Aschenbruck, and Simone Basso. 2021.

Web censorship measurements of HTTP/3 over QUIC. In Internet Measurement

Conference. ACM. https://dl.acm.org/doi/pdf/10.1145/3487552.3487836

[17] Shencha Fan, Jackson Sippe, Sakamoto San, Jade Sheffey, David Fifield, Amir

Houmansadr, Elson Wedwards, and Eric Wustrow. 2025. Wallbleed: A Mem-

ory Disclosure Vulnerability in the Great Firewall of China. In Network

and Distributed System Security. The Internet Society. https://gfw.report/

publications/ndss25/data/paper/wallbleed.pdf

[18] Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Cir-

cumvention. In Network and Distributed System Security. The Internet Society.

https://tlsfingerprint.io/static/frolov2019.pdf

[19] Mark Handley, Vern Paxson, and Christian Kreibich. 2001. Network Intrusion

Detection: Evasion, Traffic Normalization, and {End-to-End} Protocol Semantics.

In 10th USENIX Security Symposium (USENIX Security 01).

[20] Michael Harrity, Kevin Bock, Frederick Sell, and Dave Levin. 2022. {GET}/out:
Automated discovery of {Application-Layer} censorship evasion strategies. In

31st USENIX Security Symposium (USENIX Security 22). 465–483.

[21] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel,

Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis

Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s DNS

Censorship. In USENIX Security Symposium. USENIX. https://www.usenix.org/

system/files/sec21-hoang.pdf

[22] IETF. 2011. Security Assessment of the Internet Protocol Version 4. https:

//www.rfc-editor.org/rfc/rfc6274.html.

[23] IETF. 2014. RFC7323: TCP Extensions for High Performance. https://datatracker.

ietf.org/doc/html/rfc7323.

[24] Jill Jermyn and Nicholas Weaver. 2017. Autosonda: Discovering rules and

triggers of censorship devices. In 7th USENIX Workshop on Free and Open

Communications on the Internet (FOCI 17).

[25] Ben Jones, Roya Ensafi, Nick Feamster, Vern Paxson, and Nick Weaver. 2015.

Ethical Concerns for Censorship Measurement. In Ethics in Networked Systems

Research. ACM. https://www.icir.org/vern/papers/censorship-meas.nsethics15.

pdf

[26] Arash Molavi Kakhki, Fangfan Li, David Choffnes, Ethan Katz-Bassett, and

Alan Mislove. 2016. Bingeon under the microscope: Understanding t-mobiles

zero-rating implementation. In Proceedings of the 2016 workshop on QoE-based

Analysis and Management of Data Communication Networks. 43–48.

[27] Divyank Katira, Gurshabad Grover, Kushagra Singh, and Varun Bansal. 2023.

CensorWatch: On the Implementation of Online Censorship in India. In Free and

Open Communications on the Internet. https://www.petsymposium.org/foci/

2023/foci-2023-0006.pdf

[28] Sheharbano Khattak, Mobin Javed, Philip D Anderson, and Vern Paxson. 2013.

Towards illuminating a censorship monitor’s model to facilitate evasion. In 3rd

USENIX Workshop on Free and Open Communications on the Internet (FOCI

13).

[29] Felix Lange, Niklas Niere, Jonathan von Niessen, Dennis Suermann, Nico Heit-

mann, and Juraj Somorovsky. 2025. I (ra) nconsistencies: Novel Insights into

Iran’s Censorship. Free and Open Communications on the Internet (2025).

[30] Steve Astels Leland McInnes, John Healy. 2016. How HDBSCAN Works¶. https:

//hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

[31] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,

David Choffnes, Phillipa Gill, and AlanMislove. 2017. lib• erate,(n) a library for ex-

posing (traffic-classification) rules and avoiding them efficiently. In Proceedings

of the 2017 Internet Measurement Conference. 128–141.

[32] Bill Marczak, Jakub Dalek, Sarah McKune, Adam Senft, John Scott-Railton, and

Ron Deibert. 2018. Bad Traffic: Sandvine’s PacketLogic Devices Used to Deploy

Government Spyware in Turkey and Redirect Egyptian Users to Affiliate Ads?

(2018).

[33] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah

McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. 2015. An

Analysis of China’s Great Cannon”. In 5th USENIX Workshop on Free and Open

Communications on the Internet (FOCI 15).

[34] Morgan Marquis-Boire, Jakub Dalek, Sarah McKune, Matthew Carrieri, Masashi

Crete-Nishihata, Ron Deibert, Saad Omar Khan, John Scott-Railton, and Greg

Wiseman. 2013. Planet blue coat: Mapping global censorship and surveillance

tools. (2013).

[35] Alexander Master and Christina Garman. 2023. A Worldwide View of Nation-

state Internet Censorship. In Free and Open Communications on the Internet.

https://www.petsymposium.org/foci/2023/foci-2023-0008.pdf

[36] Soo-Jin Moon, Milind Srivastava, Yves Bieri, Ruben Martins, and Vyas Sekar. 2024.

Pryde: A modular generalizable workflow for uncovering evasion attacks against

stateful firewall deployments. In 2024 IEEE Symposium on Security and Privacy

(SP). IEEE, 4440–4458.

[37] Arvind Narayanan and Bendert Zevenbergen. 2015. No Encore for Encore?

Ethical Questions for Web-Based Censorship Measurement. Technology Science

(2015). https://censorbib.nymity.ch/pdf/Narayanan2015a.pdf

[38] net4people. 2023. Google Chrome TLS extension permutation. https://github.

com/net4people/bbs/issues/220

[39] net4people. 2024. After enabling TCP Timestamp, GFW’s censorship of obfs4 is

rendered ineffective. https://github.com/net4people/bbs/issues/442

[40] Arian Akhavan Niaki, Shinyoung Cho, ZacharyWeinberg, Nguyen Phong Hoang,

Abbas Razaghpanah, Nicolas Christin, and Phillipa Gill. 2020. ICLab: A global, lon-

gitudinal internet censorship measurement platform. In 2020 IEEE Symposium

https://censorbib.nymity.ch/pdf/Alice2020a.pdf
https://arxiv.org/pdf/1306.4361v1.pdf
https://www.chinagfw.org/2009/09/gfw_21.html
https://geneva.cs.umd.edu/posts/india-sni-filtering/
https://www.business-humanrights.org/en/latest-news/belarus-us-company-sandvine-supplied-technology-used-to-shut-down-internet/
https://www.business-humanrights.org/en/latest-news/belarus-us-company-sandvine-supplied-technology-used-to-shut-down-internet/
https://www.caida.org/catalog/datasets/routeviews-prefix2as/
https://dl.acm.org/doi/pdf/10.1145/3487552.3487836
https://gfw.report/publications/ndss25/data/paper/wallbleed.pdf
https://gfw.report/publications/ndss25/data/paper/wallbleed.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://www.usenix.org/system/files/sec21-hoang.pdf
https://www.usenix.org/system/files/sec21-hoang.pdf
https://www.rfc-editor.org/rfc/rfc6274.html
https://www.rfc-editor.org/rfc/rfc6274.html
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0006.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0006.pdf
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://www.petsymposium.org/foci/2023/foci-2023-0008.pdf
https://censorbib.nymity.ch/pdf/Narayanan2015a.pdf
https://github.com/net4people/bbs/issues/220
https://github.com/net4people/bbs/issues/220
https://github.com/net4people/bbs/issues/442

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

on Security and Privacy (SP). IEEE, 135–151.

[41] Niklas Niere, Sven Hebrok, Juraj Somorovsky, and Robert Merget. 2023. Poster:

Circumventing the GFW with TLS Record Fragmentation. In Proceedings of

the 2023 ACM SIGSAC Conference on Computer and Communications Security.

3528–3530.

[42] nmap. 1997. Nmap: the Network Mapper. https://nmap.org/

[43] Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick Feamster, Nguyen Phong

Hoang, and Dave Levin. 2023. Measuring and evading turkmenistan’s inter-

net censorship: A case study in large-scale measurements of a low-penetration

country. In Proceedings of the ACMWeb Conference 2023. 1969–1979.

[44] Ramakrishna Padmanabhan, Arturo Filastò, Maria Xynou, Ram Sundara Raman,

Kennedy Middleton, Mingwei Zhang, Doug Madory, Molly Roberts, and Alberto

Dainotti. 2021. A multi-perspective view of Internet censorship in Myanmar. In

Free and Open Communications on the Internet. ACM. https://dl.acm.org/doi/

pdf/10.1145/3473604.3474562

[45] Paul Pearce, Roya Ensafi, Frank Li, Nick Feamster, and Vern Paxson. 2017. Augur:

Internet-Wide Detection of Connectivity Disruptions. In Symposium on Security

& Privacy. IEEE. https://www.ieee-security.org/TC/SP2017/papers/586.pdf

[46] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver,

and Vern Paxson. 2017. Global Measurement of DNS Manipulation. In USENIX

Security Symposium. USENIX. https://www.usenix.org/system/files/conference/

usenixsecurity17/sec17-pearce.pdf

[47] Thomas Pornin. 2014. StackExchange: Identifying SSL traffic? https://security.

stackexchange.com/questions/56338/identifying-ssl-traffic

[48] Thomas H Ptacek and Timothy N Newsham. 1998. Insertion, evasion, and denial

of service: Eluding network intrusion detection. Technical Report. Technical

report, Secure Networks, Inc.

[49] Ram Sundara Raman, Leonid Evdokimov, Eric Wustrow, J. Alex Halderman, and

Roya Ensafi. 2020. Investigating Large Scale HTTPS Interception in Kazakhstan.

In Internet Measurement Conference. ACM. https://dl.acm.org/doi/pdf/10.1145/

3419394.3423665

[50] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh, Will Scott,

and Roya Ensafi. 2020. Measuring the Deployment of Network Censorship Filters

at Global Scale.. In NDSS.

[51] Ram Sundara Raman, Mona Wang, Jakub Dalek, Jonathan Mayer, and Roya

Ensafi. 2022. Network measurement methods for locating and examining censor-

ship devices. In Proceedings of the 18th International Conference on emerging

Networking EXperiments and Technologies. 18–34.

[52] Raymond Rambert, Zachary Weinberg, Diogo Barradas, and Nicolas Christin.

2021. Chinese Wall or Swiss Cheese? Keyword filtering in the Great Firewall of

China. In WWW. ACM. https://censorbib.nymity.ch/pdf/Rambert2021a.pdf

[53] Reethika Ramesh, Ram Sundara Raman, Apurva Virkud, Alexandra Dirksen,

Armin Huremagic, David Fifield, Dirk Rodenburg, Rod Hynes, Doug Madory,

and Roya Ensafi. 2023. Network Responses to Russia’s Invasion of Ukraine in

2022: A Cautionary Tale for Internet Freedom. In USENIX Security Symposium.

USENIX. https://censoredplanet.org/assets/russia-ukraine-invasion.pdf

[54] Reuters. 2013. Dubai firm fined 2.8 million for shipping Blue Coat monitoring

gear to Syria. https://www.reuters.com/article/business/dubai-firm-fined-28-

million-for-shipping-blue-coat-monitoring-gear-to-syria-idUSL6N0DC4W1/

[55] Zach Rosson, Felicia Anthonio, Sage Cheng, Carolyn Tackett, and Alexia Skok.

2025. Lives on hold: internet shutdowns in 2024. https://www.accessnow.org/

internet-shutdowns-2024/.

[56] Umesh Shankar and Vern Paxson. 2003. Active mapping: Resisting NIDS evasion

without altering traffic. In 2003 Symposium on Security and Privacy, 2003. IEEE,

44–61.

[57] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi.

2020. Censored planet: An internet-wide, longitudinal censorship observa-

tory. In proceedings of the 2020 ACM SIGSAC conference on computer and

communications security. 49–66.

[58] TorProject. [n. d.]. Tor partially blocked in China. Tor Project —

blog.torproject.org. https://blog.torproject.org/tor-partially-blocked-china/.

[59] ValdikSS. 2018. GoodbyeDPI: Deep Packet Inspection circumvention utility.

https://github.com/ValdikSS/GoodbyeDPI

[60] Benjamin VanderSloot, Allison McDonald, Will Scott, J Alex Halderman, and

Roya Ensafi. 2018. Quack: Scalable Remote Measurement of {Application-Layer}
Censorship. In 27th USENIX Security Symposium (USENIX Security 18). 187–

202.

[61] Vasilis Ververis, Tatiana Ermakova, Marios Isaakidis, Simone Basso, Benjamin

Fabian, and Stefania Milan. 2021. Understanding internet censorship in europe:

The case of spain. In Proceedings of the 13th ACMWeb Science Conference 2021.

319–328.

[62] Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen. 2024. On

precisely detecting censorship circumvention in real-world networks. In Network

and Distributed System Security.

[63] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V Krishna-

murthy. 2017. Your state is not mine: A closer look at evading stateful internet

censorship. In Proceedings of the 2017 Internet Measurement Conference. 114–

127.

[64] Zhongjie Wang and Shitong Zhu. 2020. SymTCP: Eluding stateful deep packet

inspection with automated discrepancy discovery. In Network and Distributed

System Security Symposium (NDSS).

[65] Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China

is Blocking Tor. In Free and Open Communications on the Internet. USENIX.

https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf

[66] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,

Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.

2023. How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic.

In 32th USENIX Security Symposium (USENIX Security 23). https://people.cs.

umass.edu/~amir/papers/UsenixSecurity23_Encrypted_Censorship.pdf

[67] Diwen Xue, Benjamin Mixon-Baca, ValdikSS, Anna Ablove, Beau Kujath, Je-

didiah R Crandall, and Roya Ensafi. 2022. TSPU: Russia’s decentralized censor-

ship system. In Proceedings of the 22nd ACM Internet Measurement Conference.

179–194.

[68] Diwen Xue, Reethika Ramesh, Valdik S S, Leonid Evdokimov, Andrey Viktorov,

Arham Jain, Eric Wustrow, Simone Basso, and Roya Ensafi. 2021. Throttling

Twitter: an emerging censorship technique in Russia. In Proceedings of the 21st

ACM internet measurement conference. 435–443.

[69] Diwen Xue, Robert Stanley, Piyush Kumar, and Roya Ensafi. 2025. The Discrimi-

native Power of Cross-layer RTTs in Fingerprinting Proxy Traffic. In Network

and Distributed System Security. The Internet Society.

[70] xvzc. 2018. SpoofDPI: A simple and fast software designed to bypass Deep Packet

Inspection. https://github.com/xvzc/SpoofDPI

[71] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,

and Sambuddho Chakravarty. 2018. Where the light gets in: Analyzing web

censorship mechanisms in india. In Proceedings of the Internet Measurement

Conference 2018. 252–264.

[72] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan, and Barath

Raghavan. 2021. Semi-automated protocol disambiguation and code generation.

In Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 272–286.

[73] Zhechang Zhang, Bin Yuan, Kehan Yang, Deqing Zou, and Hai Jin. 2022. State-

diver: Testing deep packet inspection systems with state-discrepancy guidance.

In Proceedings of the 38th Annual Computer Security Applications Conference.

756–768.

A Appendix
A.1 Ethics
Our measurements involve sending crafted traffic (with potentially

blocked domain name or keywords) to remote endpoints in order

to trigger and observe DPI behaviors, which raises ethical consid-

erations regarding potential harms such measurements may cause.

In developing this work, we sought guidance from our institution’s

IRB, presenting our research plan and measurement methodology

in detail. Consistent with prior measurement studies on similar

subjects [17, 51, 66], the IRB determined that our study does not

involve human subjects and granted a “Not Regulated” determina-

tion. It is important to emphasize, however, that an IRB exemption

is not an endorsement or approval of the study’s ethics but merely

indicates that the study does not meet the criteria for “human sub-

jects research” and thus falls outside their oversight. Therefore,

the responsibility lies with us as researchers to adopt measures to

minimize risks and potential harms.

We followed community norms for large-scale Internet measure-

ment [51, 66, 67] by setting up a dedicated webpage and reverse

DNS records on our measurement machines to identify ourselves,

explain the purpose of our research, and provide contact informa-

tion. We carefully ensure not to overwhelm endpoints selected as

measurement targets by running measurements one probe at a time

for each target – with probes averaging less than 1 kilobyte – and

spacing probes 120 seconds apart to avoid straining the network

resources of the targets.

We also note that half of our probes (non-Control ones) inten-

tionally include a potentially blocked domain name or censored

keyword to elicit DPI responses. While the potential risks involved

https://nmap.org/
https://dl.acm.org/doi/pdf/10.1145/3473604.3474562
https://dl.acm.org/doi/pdf/10.1145/3473604.3474562
https://www.ieee-security.org/TC/SP2017/papers/586.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://security.stackexchange.com/questions/56338/identifying-ssl-traffic
https://security.stackexchange.com/questions/56338/identifying-ssl-traffic
https://dl.acm.org/doi/pdf/10.1145/3419394.3423665
https://dl.acm.org/doi/pdf/10.1145/3419394.3423665
https://censorbib.nymity.ch/pdf/Rambert2021a.pdf
https://censoredplanet.org/assets/russia-ukraine-invasion.pdf
https://www.reuters.com/article/business/dubai-firm-fined-28-million-for-shipping-blue-coat-monitoring-gear-to-syria-idUSL6N0DC4W1/
https://www.reuters.com/article/business/dubai-firm-fined-28-million-for-shipping-blue-coat-monitoring-gear-to-syria-idUSL6N0DC4W1/
https://www.accessnow.org/internet-shutdowns-2024/
https://www.accessnow.org/internet-shutdowns-2024/
https://blog.torproject.org/tor-partially-blocked-china/
https://github.com/ValdikSS/GoodbyeDPI
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://people.cs.umass.edu/~amir/papers/UsenixSecurity23_Encrypted_Censorship.pdf
https://people.cs.umass.edu/~amir/papers/UsenixSecurity23_Encrypted_Censorship.pdf
https://github.com/xvzc/SpoofDPI

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

in censorship measurements remain an area of debate within the

measurement community [25, 37], we emphasize that all our mea-

surements are fully remote, meaning that all connections are initi-

ated exclusively from our measurement machines located on the

“external/public” side of the DPI devices, with targeted web servers

merely accepting inbound connection requests on their listening

ports. We consider it highly unlikely that receiving unsolicited traf-

fic with censored keywords could implicate these web servers, given

that such servers, publicly accessible on the Internet, inherently

have no control over the types of traffic they receive.

A.2 Open Science
In line with the open science policy, we will formally release the

source code of dMAP at the time of publication and also register our

artifacts for evaluation. As of now, the source code of dMAP can be

found in the anonymous GitHub repository at https://anonymous.

4open.science/r/dmap-C151.

A.3 Reduce Inconclusive Measurement
Outcomes

To decrease the incidence of inconclusive measurements – such

as the {R2,R3,R4}{R1} pattern in Table 2 – we can append a stan-

dard application-layer request with the Control Domain after the

mutated request packet. If the web server discards the mutated

request packet but still responds to the appended standard request,

we can more easily distinguish between server-side rejection and

DPI-induced blocking. For example, suppose a particular mutation

causes the target web server itself to drop the request. Without an

appended standard request, the resulting blackhole matches the

DPI’s triggered blocking behavior, producing the ambiguity dis-

cussed in § 4.2. However, if we append a standard control request

to the same flow, then in R3 (Mutated Control) we might receive a

legitimate server response to that appended request, whereas in R4

(Mutated Test) we would still see no response if the DPI was trig-

gered. By comparing outcomes across R2, R3, and R4, Analyzer can
more conclusively determine whether the DPI has been triggered,

or if the server simply dropped malformed packets.

One caveat is that this approach assumes theDPI enforces session-

level blocking. That is, once a DPI is triggered by a violating packet,

it typically blocks the entire connection flow. If a stateless DPI drops

only the offending packet but then allows subsequent packets, we

might mistakenly label the probe as a bypass. While this represents

a false negative in evasion attack discovery, it does not critically

undermine our fingerprinting goal, which aims for consistent signa-

tures across identical DPI implementations. As long as we reliably

produce the same verdict in these corner cases, the method remains

valid for clustering and differentiation (i.e., a stateless DPI would

still exhibit its own DPI fingerprint that is likely very different from

any stateful DPI).

Finally, not all inconclusive patterns can be resolved by append-

ing extra requests – in some cases, web servers may terminate

connections immediately upon receiving a mutated packet (e.g.,

injecting a RST). However, at the probe selection stage, we can filter

out probes that frequently yield such inconclusive outcomes and

prioritize those that provide more conclusive verdicts.

A.4 Example Probe Configuration

Listing 1: A sample YAML probe configuration for dMAP , test-
ing DPI behaviors when encountering packets with invalid
(too old) TCP Timestamp option.
protocol: http/https
applicationMessage:

http:
request: "GET / HTTP /1.1\r\nHost: ${}\r\nUser -

Agent: curl /8.11.1\r\nAccept: */*\r\n\r\n"
tls:

clientHelloConfig:
chVersion: "0303"

records:
- contentType: "16"

recordVersion: "0301"
payloadType: "clienthello"
offset: 0
length: -1

packets:
- ethernet:

ip:
tos: 0
ttl: 64
id: 33345
protocol: tcp
moreFragments: false
dontFragment: true
ipOptions:

tcp:
window: 65535
urgentPointer: 0
flags:

syn: true
tcpOptions:

- tcpOptionType: 1
- tcpOptionType: 1
- tcpOptionType: 2

tcpOptionLength: 4
tcpOptionData: "05B4"

- tcpOptionType: 3
tcpOptionLength: 3
tcpOptionData: "06"

- tcpOptionType: 8
tcpOptionLength: 10
tcpOptionData: "0102030000000000"

delay: 1

- ethernet:
ip:

tos: 0
ttl: 64
id: 33346
protocol: tcp
moreFragments: false
dontFragment: true
ipOptions:

tcp:
window: 2056
urgentPointer: 0
flags:

https://anonymous.4open.science/r/dmap-C151
https://anonymous.4open.science/r/dmap-C151

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

ack: true
tcpOptions:

- tcpOptionType: 8
tcpOptionLength: 10
tcpOptionData: "0102030400000000"

- ethernet:
ip:

tos: 0
ttl: 64
id: 33347
protocol: tcp
moreFragments: false
dontFragment: true
ipOptions:

tcp:
window: 2056
flags:

psh: true
ack: true

messageOffset: 0
messageLength: -1
tcpOptions:

- tcpOptionType: 8
tcpOptionLength: 10
tcpOptionData: "0102000000000000"

delay: 1

- ethernet:
ip:

tos: 0
ttl: 64
id: 33348
protocol: tcp
moreFragments: false
dontFragment: true
ipOptions:

tcp:
window: 2056
flags:

psh: true
ack: true

messageOffset: 0
messageLength: -1
reverseDomain: true
tcpOptions:

- tcpOptionType: 8
tcpOptionLength: 10
tcpOptionData: "0102030500000000"

delay: 1

- ethernet:
ip:

tos: 0
ttl: 64
id: 33349

tcp:
window: 2056
flags:

ack: true
fin: true

delay: 1

- ethernet:
ip:

tos: 0
ttl: 64
id: 33350

tcp:
window: 2056
flags:

ack: true

A.5 TCP&IP Mutations

Listing 2: Fields in TCP and IP packets that we mutate to gen-
erate candidate probes. Red fields indicate those previously
exploited in evasion attacks and are mutated in this work,
while blue fields represent previously exploited fields that
we do not mutate.
IP:

Version
Differentiated Service
Total Length
Identification
IP Flags (Reserved, DF, MF)
Fragment Offset
TimeToLive
Protocol
Checksum
Source Address
Destination Address
IP Options:

IP Options Type
IP Options Length
IP Options Value

Payload
TCP:

Source Port
Destination Port
Sequence Number
Acknowledge Number
Length
TCP Flags
Window
Checksum
Urgent Pointer Value
TCP Options:

TCP Options Type
TCP Options Length
TCP Options Value

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Payload

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

Figure 16: Snort’s (v3.6.0) TCP Timestamp validation.

Figure 14: Zeek’s (v7.0.4) handling of partially out-window
TCP segments.

Figure 15: Snort’s (v3.6.0) handling of partially out-window
TCP segments.

A.6 Root Cause Analysis
Figures 14, 15, and 16 show excerpts from the Zeek and Snort

source code that illustrate the specific behaviors we leverage for

fingerprinting.

Fingerprinting Deep Packet Inspection Devices by their Ambiguities CCS’25, October 2025, Taipei, Taiwan

Common Probes

Layer Type Name Description

IP Fragment Fragment[l:IP;t:maxDist;maxdist:16]

Split the triggering request at the IP layer into two fragments; send the first fragment; then

send 16 dummy fragments with random data with the same IP addresses but different IPID;

finally send the second fragment of the triggering request.

TCP Insert Insert[p:I3;f:P;d:altProto;option:]

Insert a TCP packet containing a non-triggering request of the other protocol (i.e., send a

HTTP GET if the current measurement is HTTPS, or a TLS clienthello if HTTP), before

sending the triggering request.

TCP Mutate Mutate[l:TCP;f:seq;option:negativeSeqWithPadding]

Mutate the triggering packet with SEQ ≤ ISN, and prepend the payload with padding so

that the request data is in-window.

IP Fragment Fragment[l:IP;t:outorder] Split the triggering request at the IP layer into three fragments and send them backwards.

IP Fragment Fragment[l:IP;t:overlapping;position:lshortrequal]

Split the triggering request at the IP layer into multiple fragments, with two fragments

partially overlap. In this case, the second overlapping fragment has a larger offset and ends

exactly at the right boundary of the first fragment.

IP Mutate Mutate[l:IP;f:option;option:noop] Add a NO-Operation (NOP) option to the IP header of the triggering request.

TCP Mutate Mutate[l:TCP;f:checksum;checksum:corrupt] Corrupt the TCP checksum of the triggering request.

TCP Mutate Mutate[l:TCP;f:urgentPointer;option:noack]

Add the Urgent TCP flag to the TCP header of the triggering request while removing the

ACK flag. Use a random (≤ 𝑙𝑒𝑛 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑)) value as the value of the urgent pointer.

TCP Insert Insert[p:I3;f:P;d:controlRequest;option:]

Insert a TCP packet containing a non-triggering request, with only PSH flag (no ACK)

before sending the triggering request.

TCP Mutate Mutate[l:TCP;f:option;option:timestamp]

Add a TCP Timestamp option to the TCP header of all outgoing packets. Then mutate

the timestamp of the triggering request to a timestamp earlier than that of the preceding

outgoing packet.

TCP Mutate Mutate[l:TCP;f:urgentPointer;option:]

Add the Urgent TCP flag to the TCP header of the triggering request. Use a random (≤
𝑙𝑒𝑛 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑)) value as the value of the urgent pointer.

TCP Fragment Fragment[l:TCP;t:overlapping;position:lequalrlong]

Split the triggering request at the TCP layer into multiple segments, with two segments

partially overlap. In this case, the second overlapping segment has the same offset as the first

one but has a larger size so that it extends beyond the right boundary of the first segment.

TCP Insert Insert[p:I3;f:PA;d:controlRequest;option:checksum]

Insert a TCP packet containing a non-triggering request, with PSH/ACK flag and corrupt

TCP checksum, before sending the triggering request.

IP Fragment Fragment[l:IP;t:fragmentNum;num:55] Split the triggering request at the IP layer into 55 fragments.

IP Mutate Mutate[l:IP;f:flag;flags:M] Change the IP flag of the triggering request to “More Fragment”.

TCP Fragment Fragment[l:TCP;t:overlapping;position:llongrshort]

Split the triggering request at the TCP layer into multiple segments, with two segments

partially overlap. In this case, the second overlapping segment has a smaller offset than the

first one and ends within the right boundary of the first segment.

IP Mutate Mutate[l:IP;f:flag;flags:E] Set the reserved bit (“evil bit”) in the IP header of the triggering request.

TCP Mutate Mutate[l:TCP;f:option;option:md5]

Add a MD5 signature (with invalid MD5 digest) option to the TCP header of the triggering

request.

TCP Fragment Fragment[l:TCP;t:fragmentSize;size:8]

Split the triggering request at the TCP layer into two segments, with the first segment being

8-byte long.

IP Fragment Fragment[l:IP;t:overlapping;position:llongrlong]

Split the triggering request at the IP layer into multiple fragments, with two fragments

partially overlap. In this case, the second overlapping fragment has a smaller offset and a

larger end position so that it entirely “wraps” the first fragment inside it.

TCP Fragment Fragment[l:TCP;t:overlapping;position:lshortrequal]

Split the triggering request at the TCP layer into multiple segments, with two segments

partially overlap. In this case, the second overlapping segment has a larger offset than the

first one and ends exactly at the right boundary of the first segment.

HTTP-only Probes

IP Fragment Fragment[l:IP;t:overlapping;position:lshortrshort]

Split the triggering request at the IP layer into multiple fragments, with two fragments

partially overlap. In this case, the second overlapping fragment has a larger offset and a

smaller end position so that it entirely “wrapped” by the first fragment.

HTTP Mutate Mutate[l:App;t:http;f:version;value:HTTP: 1.1]

Mutate the version field of the triggering HTTP request. Use “HTTP: 1.1” as version (addi-

tional space in the version value).

TCP Fragment Fragment[l:TCP;t:overlapping;position:lequalrequal]

Split the triggering request at the TCP layer into multiple segments, with two segments

completely overlap.

HTTP Mutate Mutate[l:App;t:http;f:method;value:GE]

Mutate the HTTP Method field of the triggering HTTP request. Use “GE” as the request

method.

TCP Insert Insert[p:I1;f:A;d:controlRequest;option:md5]

Insert a TCP packet containing a non-triggering request, with only ACK flag (no PSH) and

an invalid MD5 option before sending the triggering request.

TCP Mutate Mutate[l:TCP;f:flag;flags:SAFPU] Set the TCP flags of the triggering request to (SYN, ACK, FIN, PSH, URG).

Table 5: Top 40 probes selected following the procedure described in § 4.3.

CCS’25, October 2025, Taipei, Taiwan Diwen Xue, Armin Huremagic, Wayne Wang, Ram Sundara Raman, and Roya Ensafi

HTTP-only Probes (continued)

HTTP Mutate Mutate[l:App;t:domain;c:prepend;char:star] Prepend stars (*) before the domain name of the triggering request.

HTTP Mutate Mutate[l:App;t:http;f:version;value:HTTP:3] Mutate the version field of the triggering HTTP request. Use “HTTP:3” as version.

HTTP Mutate Mutate[l:App;t:http;f:delimiter;char:09]

Replace the default delimiter (simple space) in the triggering request with horizontal tabs

(x09).

TCP Insert Insert[p:I1;f:PU;d:controlRequest;option:timestamp]

Insert a TCP packet containing a non-triggering request, with PSH and URG flag set and an

invalid timestamp option after sending the initial SYN.

TCP Insert Insert[p:I3;f:R;d:;option:checksum]

Insert a TCP packet containing no payload, with RST flag set and an invalid checksum

before sending the triggering request.

HTTP Mutate Mutate[l:App;t:http;f:request;option:tworequest]

Have two http requests in a single TCP packet; with the triggering request being the second

one.

HTTP Mutate Mutate[l:App;t:http;f:delimiter;char:0b] Replace the default delimiter (simple space) in the triggering request with vertical tabs (x0b).

HTTP Mutate Mutate[l:App;t:http;f:method;value:GeT]

Mutate the HTTP Method field of the triggering HTTP request. Use “GeT” as the request

method.

TCP Insert Insert[p:I3;f:R;d:controlRequest;option:checksum]

Insert a TCP packet containing a non-triggering request, with RST flag set and an invalid

checksum before sending the triggering request.

HTTP Mutate Mutate[l:App;t:http;f:delimiter;char:r] Replace the default line delimiter (\r\n) in the triggering request with only \r.

HTTP Mutate Mutate[l:App;t:http;f:delimiter;char:n] Replace the default line delimiter (\r\n) in the triggering request with only \n.

TCP Insert Insert[p:I1;f:PU;d:controlRequest;option:checksum]

Insert a TCP packet containing a non-triggering request, with PSH and URG flags set and

an invalid checksum after sending the initial SYN.

TCP Insert Insert[p:I1;f:PAU;d:controlRequest;option:]

Insert a TCP packet containing a non-triggering request, with PSH, ACK, and URG flags set

before sending the initial SYN.

HTTPs-only Probes

TCP Insert Insert[p:I3;f:PA;d:random;option:checksum]

Insert a TCP packet containing random bytes as payload, with PSH and ACK flags set and

corrupted checksum before sending the triggering request.

HTTPS Mutate Mutate[l:App;t:domain;c:append;char:space] Append spaces to the SNI of the triggering Clienthello.

HTTPS Mutate Mutate[l:App;t:tls;f:recordVersion;value:0304] Set the record-layer version of the triggering Clienthello to \x03\x04

TCP Insert Insert[p:I1;f:PU;d:controlRequest;option:outwindowSeq]

Insert a TCP packet with a non-triggering request, with PSH and URG flags set and an

out-window sequence number after sending the initial SYN.

TCP Mutate Mutate[l:TCP;f:flag;flags:P] Set the TCP flags of the triggering request to only PSH (no ACK).

TCP Fragment Fragment[l:TCP;t:fragmentNum;num:8] Split the triggering request at the TCP layer into 8 segments.

TCP Fragment Fragment[l:TCP;t:fragmentNum;num:32] Split the triggering request at the TCP layer into 32 segments.

TCP Fragment Fragment[l:TCP;t:overlapping;position:lequalrequal]

Split the triggering request at the TCP layer into multiple segments, with two segments

completely overlap.

HTTPS Mutate Mutate[l:App;t:domain;c:append;char:star] Append stars (*) to the SNI of the triggering Clienthello.

HTTPS Mutate Mutate[l:App;t:domain;c:prepend;char:space] Prepend spaces to the SNI of the triggering Clienthello.

TCP Insert Insert[p:I3;f:PU;d:controlRequest;option:inwindowSeq]

Insert a TCP packet with a non-triggering request, with PSH and URG flags set and an

in-window but incorrect sequence number before sending the triggering request.

TCP Insert Insert[p:I3;f:RA;d:;option:checksum]

Insert a TCP packet with no payload, with RST and ACK flags set and a corrupted checksum

before sending the triggering request.

HTTPS Mutate Mutate[l:App;t:tls;f:recordVersion;value:03ff] Set the record-layer version of the triggering Clienthello to \x03\xff

HTTPS Mutate Mutate[l:App;t:tls;f:legacyVersion;value:0000] Set the legacy version within the triggering Clienthello to \x00\x00

TCP Insert Insert[p:I2;f:PU;d:controlRequest;option:outwindowSeq]

Insert a TCP packet with a non-triggering request, with PSH and URG flags set and an

out-window sequence number before sending the ACK that concludes the TCP handshake.

TCP Insert Insert[p:I2;f:RP;d:controlRequest;option:checksum]

Insert a TCP packet with a non-triggering request, with RST and PSH flags set and corrupted

checksum before sending the ACK that concludes the TCP handshake.

TCP Insert Insert[p:I2;f:PU;d:controlRequest;option:checksum]

Insert a TCP packet with a non-triggering request, with PSH and URG flags set and corrupted

checksum before sending the ACK that concludes the TCP handshake.

TCP Insert Insert[p:I3;f:P;d:altProto;option:outwindowSeq]

Insert a TCP packet containing a non-triggering request of the other protocol (i.e., send a

HTTP GET if the current measurement is HTTPS, or a TLS clienthello if HTTP) with only

PSH flag set and an out-window sequence number, before sending the triggering request.

TCP Mutate Mutate[l:TCP;f:flag;flags:] Remove all TCP flags of the triggering request.

Table 6: (Continued) Top 40 probes selected following the procedure described in § 4.3.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Internet Censorship and Interference
	2.2 Censorship Devices

	3 Methodology
	3.1 Overview: Fingerprinting by Ambiguities
	3.2 Evasion-By-Ambiguities
	3.3 A Survey of DPI Evasion Attacks

	4 dMAP Architecture and Experimentation
	4.1 Prober
	4.2 Analyzer
	4.3 Probe Selection

	5 Measurement
	5.1 Measurement Setup
	5.2 Measurement Results

	6 Discussion
	6.1 Long-Term Viability of DPI Fingerprinting
	6.2 Limitations
	6.3 Fingerprinting Other Targeted Interference

	7 Conclusion
	References
	A Appendix
	A.1 Ethics
	A.2 Open Science
	A.3 Reduce Inconclusive Measurement Outcomes
	A.4 Example Probe Configuration
	A.5 TCP&IP Mutations
	A.6 Root Cause Analysis

